KMITL Innovation Expo 2025 Logo

Information Technology and AI

Mango Fruit Detection and 3D Localization System

คณะวิศวกรรมศาสตร์

Mango Fruit Detection and 3D Localization System

The evaluation of mango yield and consumer behavior reflects an increasing awareness of product origins, with a growing demand for traceability to understand how the produce has been cultivated and managed. This study explores the relationship between mango characteristics and cultivation practices before harvest, using location identification to provide insights into these processes. To achieve this, a model was developed to detect and locate mangoes using 2D images via a Deep Learning approach. The study also investigates techniques to determine the real-world coordinates of mangoes from 2D images. The YOLOv8 model was employed for object detection, integrated with camera calibration and triangulation techniques to estimate the 3D positions of detected mangoes. Experiments involved 125 trials with randomized mango positions and camera placements at varying yaw and pitch angles. Parameters extracted from sequential images were compared to derive the actual 3D positions of the mangoes. The YOLOv8 model demonstrated high performance with prediction metrics of Precision (0.928), Recall (0.901), mAP50 (0.965), mAP50-95 (0.785), and F1-Score (0.914). These results indicate sufficient accuracy for predicting mango positions, with an average positional error of approximately 38 centimeters.

Read more
Optimization Hydrogen Manufacturing (HMU-2) and Pressure Swing Adsorption (PSA-3) Unit

คณะวิศวกรรมศาสตร์

Optimization Hydrogen Manufacturing (HMU-2) and Pressure Swing Adsorption (PSA-3) Unit

This cooperative education project aims to enhance the efficiency of Hydrogen Manufacturing Unit 2 (HMU-2) and Pressure Swing Adsorption 3 (PSA-3) by using AVEVA Pro/II process modeling and a Machine Learning model for process simulation. The study found that the AVEVA Pro/II model predicted outcomes with deviations ranging from 0–35%, including a hydrogen flow rate deviation from the PSA unit of 12%, exceeding the company’s acceptable limit of 10%. To address this, a Machine Learning model based on the Random Forest algorithm was developed with hyperparameter tuning. The Machine Learning model demonstrated high accuracy, achieving Mean Squared Errors (MSE) of 8.48 and 0.18 for process and laboratory data, respectively, and R-squared values of 0.98 and 0.88 for the same datasets. It outperformed the AVEVA Pro/II model in predicting all variables and reduced the hydrogen flow rate deviation to 4.75% and 1.35% for production rates of 180 and 220 tons per day, respectively. Optimization using the model provided recommendations for process adjustments, increasing hydrogen production by 7.8 tons per day and generating an additional annual profit of 850,966.23 Baht.

Read more
Rotten Fruit Classification for Industrial

คณะวิทยาศาสตร์

Rotten Fruit Classification for Industrial

The development of a fruit spoilage detection system originates from the need to reduce agricultural product losses, a global issue affecting both the agricultural and food distribution industries. Spoiled fruit can negatively impact product quality and result in significant economic losses. The primary goal of this system is to assist in screening and removing unsuitable fruit from the supply chain, thereby preserving product quality and meeting consumer demands for fresh produce. The system was designed to simulate the sorting process by utilizing images as a key factor in detecting spoiled fruit. Experimental results demonstrated high efficiency and rapid prediction capabilities, highlighting the system’s potential for practical applications.

Read more
The Application of AI Chatbots and Lean Principles to Reduce Waiting Time for Customers and Vendors to Enhance Service Quality

คณะวิศวกรรมศาสตร์

The Application of AI Chatbots and Lean Principles to Reduce Waiting Time for Customers and Vendors to Enhance Service Quality

This research aims to reduce the time required to resolve customer issues by focusing on improvements based on lean principles and the application of technology. The researcher conducts the case study at Nexter Digital and Solution Co., Ltd. to enhance workflows, establish new work standards, and integrate Bot technology into the processes to reduce resolution time and set new performance benchmarks for the company. The research proposes key ideas, such as identifying the root cause of problems, reducing redundant processes, implementing Lean methodologies, and applying technology to streamline operations. The research identifies two main issues to be resolved. The first involves addressing customer complaints, where the results show that the average resolution time reduces from 5 days to 3 days, representing a 38% decrease. The second issue involves solving problems for vendors, where the results show that the average response time reduces from 20 minutes to within 1 minute, a 98.5% decrease. The findings from both cases not only improve customer service but also establish a new standard for responding to and resolving internal issues more efficiently.

Read more
Safety Improvement Lifter

คณะวิศวกรรมศาสตร์

Safety Improvement Lifter

Mitsubishi Motors (Thailand) Co.,Ltd. This company has a zero-risk, zero-accident safety policy, and it has maintained records of all accidents that happened inside the factory in 2024.There have been 5 accidents to date, one of them was an accident that happened on the production line while the Production Engineer Assembly Department had control of it. I got this issue to be resolved as a result. by identifying issues, classifying them, and choosing solutions to address them. D using CCTV and AI cameras to identify behavior to prevent risky events from occurring by training AI with images or Equipment malfunctions, including pallets,X-Lifters, and conveyor Including designing the Concept Improvement of the software so that CCTV+AI Camera can detect it. Outcome following installation That area was accident-free after that. Avoid accidents Cut down on the losses that will happen Whether it be the costs incurred because of the accident Training new hires Resources for work or a variety of other purposes.

Read more
AfterDay Horizon

คณะเทคโนโลยีสารสนเทศ

AfterDay Horizon

The AfterDay Horizon project is a two-player survival game developed to raise awareness of the impact of climate change. It leverages Virtual Reality (VR) technology and a website as gaming platforms. In the game, players experience a world where civilization has collapsed due to global warming, forcing the remaining population to live in bunkers to avoid environmental dangers. AfterDay Horizon focuses on collaboration between the two players to complete various missions that help the bunker’s inhabitants survive as long as possible. These missions are designed to encourage teamwork and decision-making in challenging scenarios, while also raising awareness of the potential consequences of climate change if left unresolved. Preliminary testing of the game showed that players successfully completed the missions and worked well together. However, some missions were complex and time-consuming, indicating areas for improvement to enhance the overall enjoyment and gameplay experience.

Read more
Industrial robotic arm and pneumatic control systems

คณะวิศวกรรมศาสตร์

Industrial robotic arm and pneumatic control systems

This Project has been undertaken to address the need for skill development and knowledge enhancement in pneumatic systems and automation control, which are crucial in today’s manufacturing industry. Pneumatic systems play a vital role in various production processes, including machine control, automated devices, and assembly lines. However, the Department of Measurement and Control Engineering currently lacks a laboratory dedicated to the study and experimentation of pneumatic systems due to the deterioration and lack of maintenance of the previously used equipment. This has resulted in students missing the opportunity to practice essential skills required in the industrial sector. The authors of this thesis recognize the necessity of reviving and developing a pneumatic laboratory that can effectively support teaching, learning, and research activities. This project focuses on studying and developing industrial robotic arm control systems and pneumatic systems, integrating modern technologies such as Programmable Logic Controllers (PLC) and AI Vision. These systems are intended to be applicable to real-world industrial contexts. The outcomes of this project are expected to not only enhance the understanding of relevant technologies but also aim to transform the laboratory into a vital learning hub for current and future students. Furthermore, this initiative seeks to improve the competitiveness of students in the job market and support the development of innovations in the manufacturing industry in the years to come.

Read more
Market Maturity Matters: Analyzing the Performance Impact of Listing Duration

คณะวิศวกรรมศาสตร์

Market Maturity Matters: Analyzing the Performance Impact of Listing Duration

Given the fact that the equity market contributes a significant amount to Thai economy and increasing participants and interest by Thai companies, these facts inspire and motivate us to establish a study to analyze whether the stock market can indeed be an active booster of company performances and characteristics of companies which will be beneficial from being in the stock market. These results can support higher listing interest from companies, provide actionable ideas to companies aiming to improve their performance in the competitive arena, and suggest improvements for the stock market to further establish a stronger capital market penetration and foundation in Thailand. The main hypothesis driving this project is to examine whether “aging in the market” contributes to measurable improvements in a company’s performance. Specifically, we seek to understand if the presence of Thai companies in the Stock Exchange of Thailand correlates with enhanced operational outcomes, thereby providing insights into the true benefits of public listing on long-term performance.

Read more
A Human-engaging Robotic Interactive Assistant

คณะวิศวกรรมศาสตร์

A Human-engaging Robotic Interactive Assistant

The integration of intelligent robotic systems into human-centric environments, such as laboratories, hospitals, and educational institutions, has become increasingly important due to the growing demand for accessible and context-aware assistants. However, current solutions often lack scalability—for instance, relying on specialized personnel to repeatedly answer the same questions as administrators for specific departments—and adaptability to dynamic environments that require real-time situational responses. This study introduces a novel framework for an interactive robotic assistant (Beckerle et al. , 2017) designed to assist during laboratory tours and mitigate the challenges posed by limited human resources in providing comprehensive information to visitors. The proposed system operates through multiple modes, including standby mode and recognition mode, to ensure seamless interaction and adaptability in various contexts. In standby mode, the robot signals readiness with a smiling face animation while patrolling predefined paths or conserving energy when stationary. Advanced obstacle detection ensures safe navigation in dynamic environments. Recognition mode activates through gestures or wake words, using advanced computer vision and real-time speech recognition to identify users. Facial recognition further classifies individuals as known or unknown, providing personalized greetings or context-specific guidance to enhance user engagement. The proposed robot and its 3D design are shown in Figure 1. In interactive mode, the system integrates advanced technologies, including advanced speech recognition (ASR Whisper), natural language processing (NLP), and a large language model Ollama 3.2 (LLM Predictor, 2025), to provide a user-friendly, context-aware, and adaptable experience. Motivated by the need to engage students and promote interest in the RAI department, which receives over 1,000 visitors annually, it addresses accessibility gaps where human staff may be unavailable. With wake word detection, face and gesture recognition, and LiDAR-based obstacle detection, the robot ensures seamless communication in English, alongside safe and efficient navigation. The Retrieval-Augmented Generation (RAG) human interaction system communicates with the mobile robot, built on ROS1 Noetic, using the MQTT protocol over Ethernet. It publishes navigation goals to the move_base module in ROS, which autonomously handles navigation and obstacle avoidance. A diagram is explained in Figure 2. The framework includes a robust back-end architecture utilizing a combination of MongoDB for information storage and retrieval and a RAG mechanism (Thüs et al., 2024) to process program curriculum information in the form of PDFs. This ensures that the robot provides accurate and contextually relevant answers to user queries. Furthermore, the inclusion of smiling face animations and text-to-speech (TTS BotNoi) enhanced user engagement metrics were derived through a combination of observational studies and surveys, which highlighted significant improvements in user satisfaction and accessibility. This paper also discusses capability to operate in dynamic environments and human-centric spaces. For example, handling interruptions while navigating during a mission. The modular design allows for easy integration of additional features, such as gesture recognition and hardware upgrades, ensuring long-term scalability. However, limitations such as the need for high initial setup costs and dependency on specific hardware configurations are acknowledged. Future work will focus on enhancing the system’s adaptability to diverse languages, expanding its use cases, and exploring collaborative interactions between multiple robots. In conclusion, the proposed interactive robotic assistant represents a significant step forward in bridging the gap between human needs and technological advancements. By combining cutting-edge AI technologies with practical hardware solutions, this work offers a scalable, efficient, and user-friendly system that enhances accessibility and user engagement in human-centric spaces.

Read more