The development of a fruit spoilage detection system originates from the need to reduce agricultural product losses, a global issue affecting both the agricultural and food distribution industries. Spoiled fruit can negatively impact product quality and result in significant economic losses. The primary goal of this system is to assist in screening and removing unsuitable fruit from the supply chain, thereby preserving product quality and meeting consumer demands for fresh produce. The system was designed to simulate the sorting process by utilizing images as a key factor in detecting spoiled fruit. Experimental results demonstrated high efficiency and rapid prediction capabilities, highlighting the system’s potential for practical applications.
ระบบตรวจจับผลไม้เน่ามีที่มาจากความต้องการในการลดการสูญเสียผลผลิตทางการเกษตร ซึ่งเป็นปัญหาที่เกิดขึ้นทั่วโลกโดยเฉพาะในอุตสาหกรรมการเกษตรและการจัดจําหน่ายอาหาร ผลไม้ที่เน่าเสียจะส่งผลกระทบต่อคุณภาพของผลิตภัณฑ์และสามารถก่อให้เกิดความสูญเสียทางเศรษฐกิจได้อย่างมาก การพัฒนาระบบตรวจจับผลไม้เน่าจึงมีเป้าหมายเพื่อช่วยในการคัดกรองและแยกผลไม้ที่ไม่เหมาะสมออกจากกระบวนการจัดส่ง เพื่อรักษาคุณภาพของสินค้าและตอบสนองต่อความต้องการของผู้บริโภคที่ต้องการผลไม้สดใหม่

คณะอุตสาหกรรมอาหาร
This study aims to investigate the co-fermentation process between lactic acid bacteria (LAB) and Saccharomyces cerevisiae in the production of sour beer, with a focus on its impact on product quality, including pH, organic acid content, sugar content, and sensory characteristics. In this experiment, selected LAB strains and S. cerevisiae were utilized under controlled fermentation conditions. The microbial ratio was optimized to enhance growth and the production of key compounds. The findings indicate that co-fermentation significantly reduces pH compared to fermentation with yeast alone. Furthermore, an increase in lactic acid was observed due to sugar consumption by LAB, contributing to the distinctive flavor profile of sour beer.

คณะวิทยาศาสตร์
The aim of experiment was to study the pyrolysis oil derived from sorted landfill plastic waste that had been buried for 15 years by the Nonthaburi Provincial Administrative Organization. The pyrolysis oil was produced using a Fixed-Bed Reactor at 450 °C for 1.5 hours with LPG as the feedstock, with the goal of using the pyrolysis oil as an alternative fuel. The experiment was conducted under four different conditions : (1) plastic waste buried in a landfill that has not been washed but has been reduced in size, (2) plastic waste buried in a landfill that has been washed and has been reduced in size, (3) plastic waste buried in a landfill that not has been washed and has not been reduced in size, (4) plastic waste buried in a landfill that has not been washed and has been reduced size, with activated carbon used as a catalyst. The experiment revealed that three products were produced : Oil, gas, and char in different quantity. The pyrolysis oil were compared in terms of quality based on pH, Heating value, Moisture content, Functional group, and Chemical Composition. The pyrolysis oil we obtained will be referenced according to the criteria from the Department of Energy Business. The analysis results of the pyrolysis can explain which conditions are suitable for replacing fuel oil in industrial It is therefore one of the approaches that helps manage plastic waste in landfills, reducing the quantity by converting it into usable energy.

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
On the path of life since we were born, we have encountered many things in life, differences and various characteristics. However, each factor of each person's life has different responsibilities, dreams, and life context differences. Everyone still has to struggle against obstacles and many burdens in life, shouldering the responsibilities of themselves and their families in order to survive. Living in different ways, with many burdens and dreams, but in real life, how many people can shoulder these burdens to reach their dreams?