The development of a fruit spoilage detection system originates from the need to reduce agricultural product losses, a global issue affecting both the agricultural and food distribution industries. Spoiled fruit can negatively impact product quality and result in significant economic losses. The primary goal of this system is to assist in screening and removing unsuitable fruit from the supply chain, thereby preserving product quality and meeting consumer demands for fresh produce. The system was designed to simulate the sorting process by utilizing images as a key factor in detecting spoiled fruit. Experimental results demonstrated high efficiency and rapid prediction capabilities, highlighting the system’s potential for practical applications.
ระบบตรวจจับผลไม้เน่ามีที่มาจากความต้องการในการลดการสูญเสียผลผลิตทางการเกษตร ซึ่งเป็นปัญหาที่เกิดขึ้นทั่วโลกโดยเฉพาะในอุตสาหกรรมการเกษตรและการจัดจําหน่ายอาหาร ผลไม้ที่เน่าเสียจะส่งผลกระทบต่อคุณภาพของผลิตภัณฑ์และสามารถก่อให้เกิดความสูญเสียทางเศรษฐกิจได้อย่างมาก การพัฒนาระบบตรวจจับผลไม้เน่าจึงมีเป้าหมายเพื่อช่วยในการคัดกรองและแยกผลไม้ที่ไม่เหมาะสมออกจากกระบวนการจัดส่ง เพื่อรักษาคุณภาพของสินค้าและตอบสนองต่อความต้องการของผู้บริโภคที่ต้องการผลไม้สดใหม่

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
This study aims to identify the toothbrush appearance factors that affect baby boomers purchasing decisions. The research divide into three stages: The first stage is to classify the toothbrush appearance factors through a review of literature, research, and examining toothbrushes currently available on the market, summarizing them as appearance factors. The second stage is to summarize the results of the toothbrush appearance factors to create a multiple-choice questionnaire in three dimensions: purchasing decisions, aesthetics, and functionality. Collecting data from a group of 30 Baby Boomers aged 57-75 years old. The last stage is to summarize the three dimensions of appearance factors affecting baby boomers' toothbrush purchasing decisions and report as percentages and rank them. The research findings indicate that the most significant toothbrush appearance factor is a "Curved handle," accounting for 80%, followed by “Multi-level bristles” at 70%, a "Rubber thumb rest" at 53.3%, "Handle divided into more than two parts" at 50%, and “Offset shape” at 40%, respectively. In terms of the reason for purchasing decision based on various factors are as follows: the curved handle and offset shape give a sense of purchase with its aesthetic, While the selection of multi-level bristles, the Rubber thumb rest, and the handle divided into more than two parts due to functionality.

คณะเทคโนโลยีการเกษตร
"Eco Mango Pack: Eco-friendly Packaging for a Sustainable Future" focuses on developing innovative packaging for Nam Dok Mai mangoes, considering fruit safety, shelf life, and environmental impact. The selected materials include a box made from coconut husk, and dry water hyacinth stems have been utilized as internal cushioning to enhance shock resistance. Additionally, dried coffee grounds are incorporated into the packaging to extend the mango's shelf life. The design also takes into account the needs of small-scale farmers, making the packaging suitable for community enterprise production and reducing production costs. This project aims to add value to Thai agricultural products, support the circular economy concept, and promote the use of environmentally friendly materials in the packaging industry.

คณะวิทยาศาสตร์
Otitis Media is an infection of the middle ear that can occur in individuals of all ages. Diagnosis typically involves analyzing images taken with an otoscope by specialized physicians, which relies heavily on medical experience to expedite the process. This research introduces computer vision technology to assist in the preliminary diagnosis, aiding expert decision-making. By utilizing deep learning techniques and convolutional neural networks, specifically the YOLOv8 and Inception v3 architectures, the study aims to classify the disease and its five characteristics used by physicians: color, transparency, fluid, retraction, and perforation. Additionally, image segmentation and classification methods were employed to analyze and predict the types of Otitis Media, which are categorized into four types: Otitis Media with Effusion, Acute Otitis Media with Effusion, Perforation, and Normal. Experimental results indicate that the classification model performs moderately well in directly classifying Otitis Media, with an accuracy of 65.7%, a recall of 65.7%, and a precision of 67.6%. Moreover, the model provides the best results for classifying the perforation characteristic, with an accuracy of 91.8%, a recall of 91.8%, and a precision of 92.1%. In contrast, the classification model that incorporates image segmentation techniques achieved the best overall performance, with an mAP50-95 of 79.63%, a recall of 100%, and a precision of 99.8%. However, this model has not yet been tested for classifying the different types of Otitis Media.