The development of a fruit spoilage detection system originates from the need to reduce agricultural product losses, a global issue affecting both the agricultural and food distribution industries. Spoiled fruit can negatively impact product quality and result in significant economic losses. The primary goal of this system is to assist in screening and removing unsuitable fruit from the supply chain, thereby preserving product quality and meeting consumer demands for fresh produce. The system was designed to simulate the sorting process by utilizing images as a key factor in detecting spoiled fruit. Experimental results demonstrated high efficiency and rapid prediction capabilities, highlighting the system’s potential for practical applications.
ระบบตรวจจับผลไม้เน่ามีที่มาจากความต้องการในการลดการสูญเสียผลผลิตทางการเกษตร ซึ่งเป็นปัญหาที่เกิดขึ้นทั่วโลกโดยเฉพาะในอุตสาหกรรมการเกษตรและการจัดจําหน่ายอาหาร ผลไม้ที่เน่าเสียจะส่งผลกระทบต่อคุณภาพของผลิตภัณฑ์และสามารถก่อให้เกิดความสูญเสียทางเศรษฐกิจได้อย่างมาก การพัฒนาระบบตรวจจับผลไม้เน่าจึงมีเป้าหมายเพื่อช่วยในการคัดกรองและแยกผลไม้ที่ไม่เหมาะสมออกจากกระบวนการจัดส่ง เพื่อรักษาคุณภาพของสินค้าและตอบสนองต่อความต้องการของผู้บริโภคที่ต้องการผลไม้สดใหม่

คณะวิศวกรรมศาสตร์
Currently, lithium batteries are widely used in electronic devices and electric vehicles, making the estimation of their State of Health (SOH) crucial. Accurate SOH estimation helps extend battery lifespan, reduce maintenance costs, and prevent safety issues such as overheating or explosions. This project aims to study and analyze mathematical models of batteries and develop SOH estimation techniques using Neural Networks to enhance accuracy and evaluation speed. The experiment involved collecting charge and discharge data from three lithium battery cells under controlled temperature conditions while maintaining a constant current. The current, voltage, and time data were recorded and analyzed to determine the battery capacity for each cycle. These data were then used to train a Neural Network model. The results demonstrated an effective method for predicting battery health status. The outcomes of this project can contribute to the development of a Battery Management System (BMS) that improves battery efficiency and longevity. Additionally, it provides a foundation for applying artificial intelligence techniques in the energy sector effectively.

คณะวิศวกรรมศาสตร์
This project has been developed to address medical challenges related to the process of counting and classifying blood cells from samples, a task that requires both time and high precision. To reduce the workload of medical personnel, the developers have created a platform and an artificial intelligence (AI) system capable of automatically classifying and counting cells from sample images. This system is designed to assist medical laboratory technicians by enabling them to work more efficiently and accurately, reducing the time required for analysis. Furthermore, it promotes the advancement of medical technology, ensuring effective usability from classrooms and laboratories to hospitals.

คณะเทคโนโลยีการเกษตร
Currently, Thailand is facing the issue of an aging agricultural workforce and a shortage of labor. The hiring process for agricultural workers is primarily based on word-of-mouth within a limited, narrow area. This may have indirect negative effects in various aspects, such as the lack of basic selection criteria (experience, skills), budget control, and hiring processes. As a result, the idea of creating a job platform specifically for farmers was conceived.Currently, Thailand is facing the issue of an aging agricultural workforce and a shortage of labor. The hiring process for agricultural workers is primarily based on word-of-mouth within a limited, narrow area. This may have indirect negative effects in various aspects, such as the lack of basic selection criteria (experience, skills), budget control, and hiring processes. As a result, the idea of creating a job platform specifically for farmers was conceived.