KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Rotten Fruit Classification for Industrial

Abstract

The development of a fruit spoilage detection system originates from the need to reduce agricultural product losses, a global issue affecting both the agricultural and food distribution industries. Spoiled fruit can negatively impact product quality and result in significant economic losses. The primary goal of this system is to assist in screening and removing unsuitable fruit from the supply chain, thereby preserving product quality and meeting consumer demands for fresh produce. The system was designed to simulate the sorting process by utilizing images as a key factor in detecting spoiled fruit. Experimental results demonstrated high efficiency and rapid prediction capabilities, highlighting the system’s potential for practical applications.

Objective

ระบบตรวจจับผลไม้เน่ามีที่มาจากความต้องการในการลดการสูญเสียผลผลิตทางการเกษตร ซึ่งเป็นปัญหาที่เกิดขึ้นทั่วโลกโดยเฉพาะในอุตสาหกรรมการเกษตรและการจัดจําหน่ายอาหาร ผลไม้ที่เน่าเสียจะส่งผลกระทบต่อคุณภาพของผลิตภัณฑ์และสามารถก่อให้เกิดความสูญเสียทางเศรษฐกิจได้อย่างมาก การพัฒนาระบบตรวจจับผลไม้เน่าจึงมีเป้าหมายเพื่อช่วยในการคัดกรองและแยกผลไม้ที่ไม่เหมาะสมออกจากกระบวนการจัดส่ง เพื่อรักษาคุณภาพของสินค้าและตอบสนองต่อความต้องการของผู้บริโภคที่ต้องการผลไม้สดใหม่

Other Innovations

Air Quality Index Prediction Using Ensemble Machine Learning Methods

คณะวิทยาศาสตร์

Air Quality Index Prediction Using Ensemble Machine Learning Methods

This special problem aims to study and compare the performance of predicting the air quality index (AQI) using five ensemble machine learning methods: random forest, XGBoost, CatBoost, stacking ensemble of random forest and XGBoost, and stacking ensemble of random forest, SVR, and MLP. The study uses a dataset from the Central Pollution Control Board of India (CPCB), which includes fifteen pollutants and nine meteorological variables collected between January, 2021 and December, 2023. In this study, there were 1,024,920 records. The performance is measured using three methods: root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination. The study found that the random forest and XGBoost stacking ensemble had the best performance measures among the three methods, with the minimum RMSE of 0.1040, the minimum MAE of 0.0675, and the maximum of 0.8128. SHAP-based model interpretation method for five machine learning methods. All methods reached the same conclusion: the two variables that most significantly impacted the global prediction were PM2.5 and PM10, respectively.

Read more
Design Electric Tuk-Tuk for the Development of New Automotive Technology

คณะวิศวกรรมศาสตร์

Design Electric Tuk-Tuk for the Development of New Automotive Technology

This project aims to design and develop an electric tuk-tuk by converting the traditional combustion engine system to an electric system, supporting the reduction of air pollution and promoting sustainable automotive technology. The electric tuk-tuk is designed using a BLDC electric motor and a control system specifically adapted for the unique driving style of three-wheeled vehicles in Thailand. The study considers suitable energy systems and includes interviews with traditional tuk-tuk drivers to ensure the vehicle meets everyday usability needs. The findings suggest that adopting electric tuk-tuks not only reduces emissions and PM2.5 particulate matter but also enhances an eco-friendly image for Thailand’s tourism sector while supporting domestic innovation and economic growth.

Read more
Efficacy of mangosteen (Garcinia mangostana) peel hot water extract against Aeromonas hydrophila infection of seabass fingerling (Lates calcarifer)

คณะเทคโนโลยีการเกษตร

Efficacy of mangosteen (Garcinia mangostana) peel hot water extract against Aeromonas hydrophila infection of seabass fingerling (Lates calcarifer)

Mangosteen peel (Garcinia mangostana Linn.) extract using hot water (MPE) has been shown to have antibacterial potential in freshwater sea bass (Lates calcarifer) larvae infected with Aeromonas hydrophila. In vitro studies showed that MPE has a minimum inhibitory concentration (MIC) of 25 ppm and a minimum bactericidal concentration (MBC) of 25 ppm. In vivo, sea bass larvae were immersed in various concentrations of MPE at 0 ppm (control), 20 ppm, 40 ppm and 60 ppm, respectively, for 7 days with A. hydrophila. The results showed that the MPE-treated group had a higher survival rate compared to the control group. Hematological parameters showed that the MPE-treated group had significantly increased red blood cell (RBC), white blood cell (WBC) and hemoglobin (Hb) concentrations compared to the control group. In addition, the water quality parameters were not significantly different, except for ammonia concentration, with MPE having an ammonia concentration of 60 ppm being the lowest. All results can indicate that MPE can improve the antibacterial potential and the culture potential of sea bass larvae.

Read more