KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Optimization Hydrogen Manufacturing (HMU-2) and Pressure Swing Adsorption (PSA-3) Unit

Optimization Hydrogen Manufacturing (HMU-2) and Pressure Swing Adsorption (PSA-3) Unit

Abstract

This cooperative education project aims to enhance the efficiency of Hydrogen Manufacturing Unit 2 (HMU-2) and Pressure Swing Adsorption 3 (PSA-3) by using AVEVA Pro/II process modeling and a Machine Learning model for process simulation. The study found that the AVEVA Pro/II model predicted outcomes with deviations ranging from 0–35%, including a hydrogen flow rate deviation from the PSA unit of 12%, exceeding the company’s acceptable limit of 10%. To address this, a Machine Learning model based on the Random Forest algorithm was developed with hyperparameter tuning. The Machine Learning model demonstrated high accuracy, achieving Mean Squared Errors (MSE) of 8.48 and 0.18 for process and laboratory data, respectively, and R-squared values of 0.98 and 0.88 for the same datasets. It outperformed the AVEVA Pro/II model in predicting all variables and reduced the hydrogen flow rate deviation to 4.75% and 1.35% for production rates of 180 and 220 tons per day, respectively. Optimization using the model provided recommendations for process adjustments, increasing hydrogen production by 7.8 tons per day and generating an additional annual profit of 850,966.23 Baht.

Objective

บริษัท ไทยออยล์ จำกัด (มหาชน) (TOP) ประกอบธุรกิจโรงกลั่นน้ำมันที่มีกระบวนการผลิตที่ทันสมัยและมีประสิทธิภาพสูง เพื่อผลิตและจำหน่ายน้ำมันปิโตรเลียมสำเร็จรูปป้อนตลาดในประเทศเป็นส่วนใหญ่ ทั้งยังขยายการลงทุนให้ครอบคลุมการผลิตผลิตภัณฑ์ปิโตรเคมี นํ้ามันหล่อลื่นพื้นฐาน เอทานอล รวมถึงการลงทุนในธุรกิจไฟฟ้า ตลอดจนธุรกิจขนส่งผลิตภัณฑ์ปิโตรเลียม และปิโตรเคมีทางเรือ ธุรกิจขนส่งผลิตภัณฑ์ปิโตรเลียมสำเร็จรูปทางท่อ และธุรกิจให้คำปรึกษาทางด้านพลังงาน ซึ่งมีโรงกลั่นอยู่ที่อำเภอศรีราชา จังหวัดชลบุรี โครงงานสหกิจนี้เกี่ยวข้องกับการทำงานร่วมกับหน่วยผลิต Hydrogen Manufacturing 2 (HMU-2) และ Pressure Swing Adsorption 3 (PSA-3) ซึ่งผลิตไฮโดรเจนบริสุทธิ์สูงสำหรับใช้ในกระบวนการต่าง ๆ เช่น Hydrocrackers, Hydrodesulphuriser และ Hydrotreaters หน่วยผลิตนี้มีบทบาทสำคัญในการแยกก๊าซธรรมชาติเหลือใช้จากกระบวนการก่อนหน้า ซึ่งมีความซับซ้อนสูงและต้องการการควบคุมอุณหภูมิและความดันอย่างแม่นยำเพื่อให้กระบวนการทำงานได้อย่างมีประสิทธิภาพ เนื่องจากการขาดเครื่องมือจำลองกระบวนการที่มีประสิทธิภาพส่งผลต่อความสามารถในการผลิตและประสิทธิภาพโดยรวม ทำให้ไม่สามารถส่งไฮโดรเจนให้กระบวนการข้างต้นได้ตามความต้องการ การใช้โปรแกรม AVEVA Pro/II ซึ่งเป็นเครื่องมือสำคัญในการจำลองกระบวนการผลิตในหน่วย HMU-2 และ PSA-3 พบว่ามีข้อผิดพลาดในการจำลองบางกระบวนการ ซึ่งส่งผลกระทบต่อความแม่นยำในการคาดการณ์พารามิเตอร์ที่เกี่ยวข้องกับการผลิตไฮโดรเจน การพัฒนาโมเดล Machine Learning จึงเป็นแนวทางใหม่ที่มีศักยภาพในการเพิ่มความแม่นยำในการคาดการณ์พารามิเตอร์กระบวนการต่าง ๆ เช่น อุณหภูมิ ความดัน และอัตราการไหล การนำเทคนิค Machine Learning มาช่วยในการคาดการณ์และปรับปรุงกระบวนการผลิตไฮโดรเจนให้ได้ตามความต้องการของหน่วยผลิตในบริษัทจึงเป็นสิ่งสำคัญในการเพิ่มประสิทธิภาพการผลิตและตอบสนองความต้องการที่สูงขึ้นได้อย่างมีประสิทธิผล

Other Innovations

Eco-Mango Pack: Green Packaging for a Sustainable Future

คณะเทคโนโลยีการเกษตร

Eco-Mango Pack: Green Packaging for a Sustainable Future

"Eco Mango Pack: Eco-friendly Packaging for a Sustainable Future" focuses on developing innovative packaging for Nam Dok Mai mangoes, considering fruit safety, shelf life, and environmental impact. The selected materials include a box made from coconut husk, and dry water hyacinth stems have been utilized as internal cushioning to enhance shock resistance. Additionally, dried coffee grounds are incorporated into the packaging to extend the mango's shelf life. The design also takes into account the needs of small-scale farmers, making the packaging suitable for community enterprise production and reducing production costs. This project aims to add value to Thai agricultural products, support the circular economy concept, and promote the use of environmentally friendly materials in the packaging industry.

Read more
Detection of salivary biomarker  for migraine diagnosis

คณะแพทยศาสตร์

Detection of salivary biomarker for migraine diagnosis

Migraine, a prevalent neurological disorder, is the third most common disease globally, causing significant health and financial burdens. It has four stages: prodrome, aura, headache, and postdrome. The prodrome (also known as premonitory) stage is crucial as it precedes the headache by up to 72 hours. Taking medication during the premonitory peroid has shown to prevent the headache phase . However, the symptoms of premonitory period lack specificity, making it difficult for patients to know if they’re experiencing premonitory symptoms. Calcitonin-gene related peptide (cGRP),is a protein that plays a key role in migraine pathogenesis and studies found that salivary cGRP levels increase during the premonitory stage. This study aims to develop and evaluate a lateral flow immunoassay kit for detecting salivary cGRP levels in migraine patients during the prodrome stage. It can serve as a confirmation tool for premonitory symptoms.

Read more
Event-based Surveillance Platform from CCTV Using Computer Vision

คณะวิศวกรรมศาสตร์

Event-based Surveillance Platform from CCTV Using Computer Vision

This project develops a platform using computer vision to analyze real-time CCTV footage for detecting traffic law violations, such as crossing solid lines. The system can automatically identify and record traffic rule infringements, improving law enforcement efficiency and reducing the workload of traffic police officers. Moreover, it plays a crucial role in developing smart city systems by integrating data to enhance traffic management and road safety.

Read more