
This cooperative education project aims to enhance the efficiency of Hydrogen Manufacturing Unit 2 (HMU-2) and Pressure Swing Adsorption 3 (PSA-3) by using AVEVA Pro/II process modeling and a Machine Learning model for process simulation. The study found that the AVEVA Pro/II model predicted outcomes with deviations ranging from 0–35%, including a hydrogen flow rate deviation from the PSA unit of 12%, exceeding the company’s acceptable limit of 10%. To address this, a Machine Learning model based on the Random Forest algorithm was developed with hyperparameter tuning. The Machine Learning model demonstrated high accuracy, achieving Mean Squared Errors (MSE) of 8.48 and 0.18 for process and laboratory data, respectively, and R-squared values of 0.98 and 0.88 for the same datasets. It outperformed the AVEVA Pro/II model in predicting all variables and reduced the hydrogen flow rate deviation to 4.75% and 1.35% for production rates of 180 and 220 tons per day, respectively. Optimization using the model provided recommendations for process adjustments, increasing hydrogen production by 7.8 tons per day and generating an additional annual profit of 850,966.23 Baht.
บริษัท ไทยออยล์ จำกัด (มหาชน) (TOP) ประกอบธุรกิจโรงกลั่นน้ำมันที่มีกระบวนการผลิตที่ทันสมัยและมีประสิทธิภาพสูง เพื่อผลิตและจำหน่ายน้ำมันปิโตรเลียมสำเร็จรูปป้อนตลาดในประเทศเป็นส่วนใหญ่ ทั้งยังขยายการลงทุนให้ครอบคลุมการผลิตผลิตภัณฑ์ปิโตรเคมี นํ้ามันหล่อลื่นพื้นฐาน เอทานอล รวมถึงการลงทุนในธุรกิจไฟฟ้า ตลอดจนธุรกิจขนส่งผลิตภัณฑ์ปิโตรเลียม และปิโตรเคมีทางเรือ ธุรกิจขนส่งผลิตภัณฑ์ปิโตรเลียมสำเร็จรูปทางท่อ และธุรกิจให้คำปรึกษาทางด้านพลังงาน ซึ่งมีโรงกลั่นอยู่ที่อำเภอศรีราชา จังหวัดชลบุรี โครงงานสหกิจนี้เกี่ยวข้องกับการทำงานร่วมกับหน่วยผลิต Hydrogen Manufacturing 2 (HMU-2) และ Pressure Swing Adsorption 3 (PSA-3) ซึ่งผลิตไฮโดรเจนบริสุทธิ์สูงสำหรับใช้ในกระบวนการต่าง ๆ เช่น Hydrocrackers, Hydrodesulphuriser และ Hydrotreaters หน่วยผลิตนี้มีบทบาทสำคัญในการแยกก๊าซธรรมชาติเหลือใช้จากกระบวนการก่อนหน้า ซึ่งมีความซับซ้อนสูงและต้องการการควบคุมอุณหภูมิและความดันอย่างแม่นยำเพื่อให้กระบวนการทำงานได้อย่างมีประสิทธิภาพ เนื่องจากการขาดเครื่องมือจำลองกระบวนการที่มีประสิทธิภาพส่งผลต่อความสามารถในการผลิตและประสิทธิภาพโดยรวม ทำให้ไม่สามารถส่งไฮโดรเจนให้กระบวนการข้างต้นได้ตามความต้องการ การใช้โปรแกรม AVEVA Pro/II ซึ่งเป็นเครื่องมือสำคัญในการจำลองกระบวนการผลิตในหน่วย HMU-2 และ PSA-3 พบว่ามีข้อผิดพลาดในการจำลองบางกระบวนการ ซึ่งส่งผลกระทบต่อความแม่นยำในการคาดการณ์พารามิเตอร์ที่เกี่ยวข้องกับการผลิตไฮโดรเจน การพัฒนาโมเดล Machine Learning จึงเป็นแนวทางใหม่ที่มีศักยภาพในการเพิ่มความแม่นยำในการคาดการณ์พารามิเตอร์กระบวนการต่าง ๆ เช่น อุณหภูมิ ความดัน และอัตราการไหล การนำเทคนิค Machine Learning มาช่วยในการคาดการณ์และปรับปรุงกระบวนการผลิตไฮโดรเจนให้ได้ตามความต้องการของหน่วยผลิตในบริษัทจึงเป็นสิ่งสำคัญในการเพิ่มประสิทธิภาพการผลิตและตอบสนองความต้องการที่สูงขึ้นได้อย่างมีประสิทธิผล

คณะวิทยาศาสตร์
-

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
This research focuses on the design of a Metaverse Prototype Thai Film Archive (Public Organization) to study immersive experiences. The aims were to: 1) examine design concepts and technologies for digital immersion, 2) create and showcase these designs in the Metaverse cinema, and 3) evaluate the results and formulate knowledge for virtual exhibition design using qualitative research methods, including prototype testing with participant interviews to assess satisfaction. The design principles consisted of architectural, exhibition, and user experience concepts, leading to a virtual world creation process involving 3D structural modeling, interactive functionalities, and exhibition layout before prototype testing. The evaluation included tests by ten participants and group discussions on overall experience, cinema content value, Metaverse design, and educational enhancement in museums. The design evaluation indicated a 70% positive overall experience, with half of the users finding stable usability. However, significant viewing barriers were identified, with a high need for operational instructions and navigational aids. Content understanding and Metaverse interaction were perceived positively, and the educational aspect was highly valued. The study concludes that while the overall experience was good, technology limitations (as of 2023) and interaction challenges require ongoing refinement to improve stability and usability, although the educational value was affirmed as strong.

วิทยาเขตชุมพรเขตรอุดมศักดิ์
This project aims to design and develop an eye-tracking system to facilitate communication for paralyzed immobile patients. The system is designed to enable patients to convey their needs to caregivers or family members by detecting and tracking eye movements using the Tobii Eye Tracker 5 device. This approach serves as an alternative communication method, replacing the physical movement or speech of paralyzed patients. The system effectively detects and tracks eye movements at a distance of 55 to 85 centimeters and is designed for installation on a computer to ensure ease of use. The program interface consists of three main sections: (1) a set of emotions, (2) a set of needs, and (3) a set of additional needs. It supports input from a virtual keyboard in both Thai and English and allows users to specify additional needs through eye-tracking-enabled typing. Furthermore, the system can generate synthetic speech for text that is difficult to pronounce aloud, send notification messages via the Line application, and store usage data in a database presented in a dashboard format. System testing revealed that the optimal detection distance ranges from 65 to 75 centimeters, as this range yields an error rate of no more than 1 percent. The system accurately responds to eye movements for communication through sound within 3 seconds when interacting with various function buttons. This eye-tracking system effectively enables paralyzed immobile patients to communicate their emotions and needs, facilitating better understanding and interaction between patients and their caregivers or family members.