
This cooperative education project aims to enhance the efficiency of Hydrogen Manufacturing Unit 2 (HMU-2) and Pressure Swing Adsorption 3 (PSA-3) by using AVEVA Pro/II process modeling and a Machine Learning model for process simulation. The study found that the AVEVA Pro/II model predicted outcomes with deviations ranging from 0–35%, including a hydrogen flow rate deviation from the PSA unit of 12%, exceeding the company’s acceptable limit of 10%. To address this, a Machine Learning model based on the Random Forest algorithm was developed with hyperparameter tuning. The Machine Learning model demonstrated high accuracy, achieving Mean Squared Errors (MSE) of 8.48 and 0.18 for process and laboratory data, respectively, and R-squared values of 0.98 and 0.88 for the same datasets. It outperformed the AVEVA Pro/II model in predicting all variables and reduced the hydrogen flow rate deviation to 4.75% and 1.35% for production rates of 180 and 220 tons per day, respectively. Optimization using the model provided recommendations for process adjustments, increasing hydrogen production by 7.8 tons per day and generating an additional annual profit of 850,966.23 Baht.
บริษัท ไทยออยล์ จำกัด (มหาชน) (TOP) ประกอบธุรกิจโรงกลั่นน้ำมันที่มีกระบวนการผลิตที่ทันสมัยและมีประสิทธิภาพสูง เพื่อผลิตและจำหน่ายน้ำมันปิโตรเลียมสำเร็จรูปป้อนตลาดในประเทศเป็นส่วนใหญ่ ทั้งยังขยายการลงทุนให้ครอบคลุมการผลิตผลิตภัณฑ์ปิโตรเคมี นํ้ามันหล่อลื่นพื้นฐาน เอทานอล รวมถึงการลงทุนในธุรกิจไฟฟ้า ตลอดจนธุรกิจขนส่งผลิตภัณฑ์ปิโตรเลียม และปิโตรเคมีทางเรือ ธุรกิจขนส่งผลิตภัณฑ์ปิโตรเลียมสำเร็จรูปทางท่อ และธุรกิจให้คำปรึกษาทางด้านพลังงาน ซึ่งมีโรงกลั่นอยู่ที่อำเภอศรีราชา จังหวัดชลบุรี โครงงานสหกิจนี้เกี่ยวข้องกับการทำงานร่วมกับหน่วยผลิต Hydrogen Manufacturing 2 (HMU-2) และ Pressure Swing Adsorption 3 (PSA-3) ซึ่งผลิตไฮโดรเจนบริสุทธิ์สูงสำหรับใช้ในกระบวนการต่าง ๆ เช่น Hydrocrackers, Hydrodesulphuriser และ Hydrotreaters หน่วยผลิตนี้มีบทบาทสำคัญในการแยกก๊าซธรรมชาติเหลือใช้จากกระบวนการก่อนหน้า ซึ่งมีความซับซ้อนสูงและต้องการการควบคุมอุณหภูมิและความดันอย่างแม่นยำเพื่อให้กระบวนการทำงานได้อย่างมีประสิทธิภาพ เนื่องจากการขาดเครื่องมือจำลองกระบวนการที่มีประสิทธิภาพส่งผลต่อความสามารถในการผลิตและประสิทธิภาพโดยรวม ทำให้ไม่สามารถส่งไฮโดรเจนให้กระบวนการข้างต้นได้ตามความต้องการ การใช้โปรแกรม AVEVA Pro/II ซึ่งเป็นเครื่องมือสำคัญในการจำลองกระบวนการผลิตในหน่วย HMU-2 และ PSA-3 พบว่ามีข้อผิดพลาดในการจำลองบางกระบวนการ ซึ่งส่งผลกระทบต่อความแม่นยำในการคาดการณ์พารามิเตอร์ที่เกี่ยวข้องกับการผลิตไฮโดรเจน การพัฒนาโมเดล Machine Learning จึงเป็นแนวทางใหม่ที่มีศักยภาพในการเพิ่มความแม่นยำในการคาดการณ์พารามิเตอร์กระบวนการต่าง ๆ เช่น อุณหภูมิ ความดัน และอัตราการไหล การนำเทคนิค Machine Learning มาช่วยในการคาดการณ์และปรับปรุงกระบวนการผลิตไฮโดรเจนให้ได้ตามความต้องการของหน่วยผลิตในบริษัทจึงเป็นสิ่งสำคัญในการเพิ่มประสิทธิภาพการผลิตและตอบสนองความต้องการที่สูงขึ้นได้อย่างมีประสิทธิผล

คณะเทคโนโลยีการเกษตร
During this cooperative education program at the Bang Bo District Agricultural Office, Samut Prakan Province, a study was conducted on the costs and returns of rice cultivation using chemical inputs compared to using biopesticides in combination with chemical inputs among farmers in Bang Phli Noi Subdistrict, Bang Bo District, Samut Prakan Province.The objectives of this study were: To examine the costs and returns of rice cultivation using chemical inputs compared to using biopesticides in combination with chemical inputs among farmers in Bang Phli Noi Subdistrict, Bang Bo District, Samut Prakan Province. To explore the challenges of using biopesticides in rice cultivation among farmers in Bang Phli Noi Subdistrict, Bang Bo District, Samut Prakan Province. The study found that in the 2024/25 growing season, the total production cost for rice cultivation using biopesticides in combination with chemical inputs was 5,099.50 THB per rai, consisting of variable costs of 4,432.50 THB per rai and fixed costs of 667.00 THB per rai. Meanwhile, the total production cost for rice cultivation using only chemical inputs was 5,129.00 THB per rai, consisting of variable costs of 4,390.00 THB per rai and fixed costs of 739.00 THB per rai. The cost difference between the two methods was 114.50 THB per rai. Regarding the returns on rice cultivation in the 2024/25 growing season, the field using biopesticides in combination with chemical inputs yielded 1,000.00 kilograms per rai, with an average selling price of 8,500.00 THB per rai. Farmers earned a total revenue of 8,585.00 THB per rai and a profit of 3,485.50 THB per rai. On the other hand, the field using only chemical inputs yielded 1,000.00 kilograms per rai, with an average selling price of 8,500.00 THB per rai. Farmers earned a total revenue of 8,500.00 THB per rai and a profit of 3,371.00 THB per rai. The total income difference between the two cultivation methods was 114.50 THB per rai. In terms of challenges related to the procurement of biopesticides, it was found that biopesticides are difficult to obtain, with limited or no availability in certain areas. Additionally, relevant agencies do not provide continuous support for biopesticides, making this the most significant issue. Regarding the use of biopesticides, the most critical challenge is that once fresh biopesticides are mixed, they must be used immediately and cannot be stored, as their effectiveness deteriorates over time.

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
-

คณะเทคโนโลยีการเกษตร
The objective of this experiment was to determine the effect of nitrogen and potassium concentration combination with photoperiod on the growth of Viola in a plant factory to increase the quality of the products, reduce the production time and increase the production cycle throughout the year. The experimental plan was 3x3 Factorial in CRD with nine treatments and three replications (six plants per replication). The factor of this study was two factors; the first factor was three different concentrations of nitrogen and potassium in ratios of 1:1, 1:2 and 2:1. The second factor was the application of different photoperiods. There were 1) 24-hours photoperiod, 2) 8-hours light/16-hours dark photoperiod (Induced flowering state: 13-hours light/11-hours dark photoperiod) and 3) 5-hours light/3-hours dark photoperiod. Controlled temperature at 25 °C, the EC=1.5-2.0 mS/cm and the pH=5.8-6.5 in all treatment. The result showed that the concentration of N: K in the ratio of 1:1 combined with 24-hour photoperiod was the most vegetative growth and also maximizes reproductive growth. The overall great sensory evaluation was an acceptable level and suitable for cooking or decorating dishes. Therefore, the concentration of N: K in the ratio of 1:1 combined with 24-hour photoperiod is the best treatment to increase the quality of the product, reduce the production time of viola flowers in each cycle from 90-100 days down to 43-45 days which is good for farmers.