KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

The Application of AI Chatbots and Lean Principles to Reduce Waiting Time for Customers and Vendors to Enhance Service Quality

The Application of AI Chatbots and Lean Principles to Reduce Waiting Time for Customers and Vendors to Enhance Service Quality

Abstract

This research aims to reduce the time required to resolve customer issues by focusing on improvements based on lean principles and the application of technology. The researcher conducts the case study at Nexter Digital and Solution Co., Ltd. to enhance workflows, establish new work standards, and integrate Bot technology into the processes to reduce resolution time and set new performance benchmarks for the company. The research proposes key ideas, such as identifying the root cause of problems, reducing redundant processes, implementing Lean methodologies, and applying technology to streamline operations. The research identifies two main issues to be resolved. The first involves addressing customer complaints, where the results show that the average resolution time reduces from 5 days to 3 days, representing a 38% decrease. The second issue involves solving problems for vendors, where the results show that the average response time reduces from 20 minutes to within 1 minute, a 98.5% decrease. The findings from both cases not only improve customer service but also establish a new standard for responding to and resolving internal issues more efficiently.

Objective

ในยุคที่เทคโนโลยีและการแข่งขันทางธุรกิจพัฒนาอย่างรวดเร็ว คุณภาพการบริการเป็นปัจจัยสำคัญที่ทำให้บริษัทเติบโตอย่างยั่งยืน โดยผู้วิจัยได้เล็งเห็นความสำคัญของการยกระดับคุณภาพการบริการเพื่อตอบสนองลูกค้าของทางบริษัท เน็กซเตอร์ ดิจิตอล แอนด์ โซลูชั่น จำกัด โดยประยุกต์ใช้แนวคิด Lean เพื่อลดความสูญเสียในกระบวนการทำงาน พร้อมกับนำเทคโนโลยีบอทเข้ามาช่วยเสริมในการแก้ไขปัญหา ซึ่งช่วยลดเวลาการจัดการปัญหาได้อย่างมีประสิทธิภาพและเพิ่มความพึงพอใจของลูกค้า โดยนำเทคโนโลยีสมัยใหม่ เช่น AI และระบบอัตโนมัติ ยังช่วยให้การทำงานมีความรวดเร็วและแม่นยำ ลดความผิดพลาดจากมนุษย์ อีกทั้งยังช่วยวิเคราะห์ข้อมูลเพื่อการตัดสินใจที่ดีขึ้น จากการศึกษา พบว่าบริษัทยังขาดกระบวนการทำงานที่ชัดเจน มีเวลาเฉลี่ยในการแก้ปัญหาที่ค่อนข้างนาน และพนักงานมีภาระงานที่มากเกินไป การปรับปรุงกระบวนการทำงานจึงเน้นการสร้างผังขั้นตอนที่ชัดเจน ลดเวลาการแก้ไขปัญหาให้เหมาะสม และปรับภาระงานของพนักงานให้เหมาะสม เพื่อลดระยะเวลาการรอคอยและเพิ่มความพึงพอใจให้กับลูกค้า

Other Innovations

Web Application for Shrimp Feed Transportation Route Optimization: A Case Study of an Animal Feed Store

คณะวิทยาศาสตร์

Web Application for Shrimp Feed Transportation Route Optimization: A Case Study of an Animal Feed Store

Efficient logistics management requires the development of advanced tools to streamline delivery operations. This study aims to optimize vehicle routes for an animal feed store and develop a web-based application for route planning. The research compares two optimization methods: the Branch and Bound Method and Clustering with the Branch and Bound Method. These methods are evaluated against the store’s existing delivery route by analyzing differences in average travel distance across three dependent groups using Repeated Measures ANOVA. The findings reveal a statistically significant difference in average daily travel distances among the three methods at a 0.05 significance level. The Branch and Bound Method yields the shortest average daily travel distance. Additionally, pairwise comparisons of total daily travel distances using the Paired t-test confirm that the Branch and Bound Method produces the most efficient route with statistical significance at 0.05 level. Implementing this method can reduce total travel distance by 957.51, representing a 30.88% reduction, which translates into fuel cost savings of 2,579.45 THB per month. Based on these results, the Branch and Bound Method was selected for implementation in a web-based application. The application features an intuitive user interface, product inventory management, and optimized daily delivery route recommendations for the case study store. Following development, the web application was deployed and tested in real-world operations. The results demonstrate that it effectively provides map-based route recommendations, ensuring ease of use and accessibility on standard mobile devices.

Read more
A Human-engaging Robotic Interactive Assistant

คณะวิศวกรรมศาสตร์

A Human-engaging Robotic Interactive Assistant

The integration of intelligent robotic systems into human-centric environments, such as laboratories, hospitals, and educational institutions, has become increasingly important due to the growing demand for accessible and context-aware assistants. However, current solutions often lack scalability—for instance, relying on specialized personnel to repeatedly answer the same questions as administrators for specific departments—and adaptability to dynamic environments that require real-time situational responses. This study introduces a novel framework for an interactive robotic assistant (Beckerle et al. , 2017) designed to assist during laboratory tours and mitigate the challenges posed by limited human resources in providing comprehensive information to visitors. The proposed system operates through multiple modes, including standby mode and recognition mode, to ensure seamless interaction and adaptability in various contexts. In standby mode, the robot signals readiness with a smiling face animation while patrolling predefined paths or conserving energy when stationary. Advanced obstacle detection ensures safe navigation in dynamic environments. Recognition mode activates through gestures or wake words, using advanced computer vision and real-time speech recognition to identify users. Facial recognition further classifies individuals as known or unknown, providing personalized greetings or context-specific guidance to enhance user engagement. The proposed robot and its 3D design are shown in Figure 1. In interactive mode, the system integrates advanced technologies, including advanced speech recognition (ASR Whisper), natural language processing (NLP), and a large language model Ollama 3.2 (LLM Predictor, 2025), to provide a user-friendly, context-aware, and adaptable experience. Motivated by the need to engage students and promote interest in the RAI department, which receives over 1,000 visitors annually, it addresses accessibility gaps where human staff may be unavailable. With wake word detection, face and gesture recognition, and LiDAR-based obstacle detection, the robot ensures seamless communication in English, alongside safe and efficient navigation. The Retrieval-Augmented Generation (RAG) human interaction system communicates with the mobile robot, built on ROS1 Noetic, using the MQTT protocol over Ethernet. It publishes navigation goals to the move_base module in ROS, which autonomously handles navigation and obstacle avoidance. A diagram is explained in Figure 2. The framework includes a robust back-end architecture utilizing a combination of MongoDB for information storage and retrieval and a RAG mechanism (Thüs et al., 2024) to process program curriculum information in the form of PDFs. This ensures that the robot provides accurate and contextually relevant answers to user queries. Furthermore, the inclusion of smiling face animations and text-to-speech (TTS BotNoi) enhanced user engagement metrics were derived through a combination of observational studies and surveys, which highlighted significant improvements in user satisfaction and accessibility. This paper also discusses capability to operate in dynamic environments and human-centric spaces. For example, handling interruptions while navigating during a mission. The modular design allows for easy integration of additional features, such as gesture recognition and hardware upgrades, ensuring long-term scalability. However, limitations such as the need for high initial setup costs and dependency on specific hardware configurations are acknowledged. Future work will focus on enhancing the system’s adaptability to diverse languages, expanding its use cases, and exploring collaborative interactions between multiple robots. In conclusion, the proposed interactive robotic assistant represents a significant step forward in bridging the gap between human needs and technological advancements. By combining cutting-edge AI technologies with practical hardware solutions, this work offers a scalable, efficient, and user-friendly system that enhances accessibility and user engagement in human-centric spaces.

Read more
DeHome

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

DeHome

This conceptual model, titled "DeHome", incorporates the principles of Deconstructivism in architectural design. It deconstructs the fundamental elements of a house—roof, columns, doors, windows, and bricks—separating them and reassembling them in a way that conveys fragmentation, contradiction, and movement. This design challenges the traditional concept of structural stability by enlarging key elements such as doors, windows, and columns, emphasizing distortion and the dynamic force of transformation. Beyond merely dismantling the physical structure of a house, this project reinterprets the very concept of "home" within the context of contemporary architecture.

Read more