KMITL Innovation Expo 2025 Logo

Mango Fruit Detection and 3D Localization System

Mango Fruit Detection and 3D Localization System

Abstract

The evaluation of mango yield and consumer behavior reflects an increasing awareness of product origins, with a growing demand for traceability to understand how the produce has been cultivated and managed. This study explores the relationship between mango characteristics and cultivation practices before harvest, using location identification to provide insights into these processes. To achieve this, a model was developed to detect and locate mangoes using 2D images via a Deep Learning approach. The study also investigates techniques to determine the real-world coordinates of mangoes from 2D images. The YOLOv8 model was employed for object detection, integrated with camera calibration and triangulation techniques to estimate the 3D positions of detected mangoes. Experiments involved 125 trials with randomized mango positions and camera placements at varying yaw and pitch angles. Parameters extracted from sequential images were compared to derive the actual 3D positions of the mangoes. The YOLOv8 model demonstrated high performance with prediction metrics of Precision (0.928), Recall (0.901), mAP50 (0.965), mAP50-95 (0.785), and F1-Score (0.914). These results indicate sufficient accuracy for predicting mango positions, with an average positional error of approximately 38 centimeters.

Objective

ในปัจจุบัน เทคโนโลยีทางการเกษตรได้รับการพัฒนาอย่างต่อเนื่อง เพื่อเพิ่มประสิทธิภาพในการผลิตและการจัดการผลผลิตอย่างแม่นยำ การตรวจจับตำแหน่งของผลผลิตในพื้นที่เกษตรกรรมถือเป็นหนึ่งในความท้าทายสำคัญที่นักวิจัยและผู้ประกอบการในอุตสาหกรรมเกษตรกรรมต้องการหาทางออก โดยเฉพาะการตรวจจับและการประเมินผลผลิตของผลมะม่วง ที่เป็นผลไม้ที่มีความสำคัญทางเศรษฐกิจในหลายประเทศ ซึ่งประเทศไทยเป็นหนึ่งในผู้ผลิตมะม่วงรายใหญ่ของโลก รวมถึงพฤติกรรมของผู้บริโภคที่มีความตระหนักถึงที่มาของผลผลิตมากยิ่งขึ้น ต้องการตรวจสอบย้อนกลับถึงที่มาของผลผลิตว่าผลผลิตนั้นๆได้รับการดูแลมาอย่างไรผ่านการระบุตำแหน่งของผลนั้นๆ ทั้งเป็นแหล่งข้อมูลที่บ่งบอกถึงลักษะของผลผลิตที่ได้มาได้ผ่านการดูแลรูปแบบใดในขณะที่ยังไม่ถูกเก็บเกี่ยว การพัฒนาเทคนิคในการหาตำแหน่งบนโลกจริง 3 มิติ ของมะม่วงจากข้อมูลภาพ 2 มิติ จึงเป็นเรื่องที่มีความสำคัญอย่างยิ่งในด้านการเกษตร เนื่องจากการตรวจจับและการประเมินผลผลิตในพื้นที่เกษตรกรรมเป็นขั้นตอนสำคัญในการจัดการและการเก็บเกี่ยวผลผลิต เทคนิคที่ใช้ในงานวิจัยนี้คือการผสมผสานระหว่างการสอบเทียบกล้อง (Camera Calibration) การตรวจจับวัตถุจากภาพ 2 มิติเพื่อคำนวณตำแหน่งในมิติ 3 มิติ โดยเทคนิค Triangulation และเทคโนโลยีการตรวจจับภาพที่มีความแม่นยำสูงอย่าง YOLOv8 มาใช้ ซึ่งเป็นโมเดลที่พัฒนาโดยใช้การเรียนรู้เชิงลึก (deep learning) ที่มีประสิทธิภาพในการตรวจจับวัตถุในภาพได้อย่างรวดเร็วและแม่นยำ ทั้งนี้ผู้จัดทำจึงมีแนวคิดที่ต้องการพัฒนาวิธีการหาตำแหน่งของผลมะม่วง เพื่อเพิ่มความสามารถในการประเมินผลผลิตทางการเกษตร ซึ่งเป็นปัจจัยสำคัญในการทำการเกษตรแบบเกษตรแม่นยำ (Precision Agriculture) การใช้เทคโนโลยีที่มีความแม่นยำสูงในการตรวจจับและประมวลผลข้อมูลภาพสามารถช่วยให้การจัดการผลผลิตในภาคเกษตรกรรมมีประสิทธิภาพมากขึ้น การรับรู้ข้อมูลของผลผลิต ลดความผิดพลาดในการประเมิน และความรวดเร็วในการจัดการ นอกจากนี้ยังสามารถนำไปประยุกต์ใช้ในการพัฒนาเทคโนโลยีใหม่ๆ ที่สามารถช่วยเพิ่มผลผลิตในภาคเกษตรกรรมและเสริมสร้างความยั่งยืนในอุตสาหกรรมเกษตรกรรมในอนาคต

Other Innovations

DuLeafCare: Durian Leaf Care Web Aplication

วิทยาเขตชุมพรเขตรอุดมศักดิ์

DuLeafCare: Durian Leaf Care Web Aplication

Durian is an important economic crop in Thailand that is affected by foliar diseases such as rust, leaf blight, and leaf spot. These diseases reduce the quality of the yield and increase management costs. This research focuses on developing AI software for screening durian leaf diseases by applying deep learning technology to classify different types of leaf lesions.

Read more
Innovation in commercial vertical set of golden apple snails  as environmentally friendly using an aquaponics system

คณะเทคโนโลยีการเกษตร

Innovation in commercial vertical set of golden apple snails as environmentally friendly using an aquaponics system

The innovation of the vertical aquaponics system for rearing golden apple snails integrating with vegetable cultivation by using substrates to water treatment. The system aims to maximize the use of vertical space, save water, and produce safe vegetables for consumption or commercial purposes, and to support living things. The golden apple snail excretes wastes/leftover food scraps that are filtered on the substrates used for water treatment. Meanwhile, natural bacteria help change these wastes into nutrients that plants can use. Therefore, the system is environmentally friendly.

Read more
Development of Credit Card Customer Churn Prediction Model

คณะเทคโนโลยีสารสนเทศ

Development of Credit Card Customer Churn Prediction Model

This report is part of applying the knowledge gained from studying machine learning models and methods for developing a predictive model to identify customers likely to cancel their credit card services with a bank. The project was carried out during an internship at a financial institution, where the creator developed a model to predict customers likely to churn from their credit card services using real customer data through the organization's system. The focus was on building a model that can accurately predict customer churn by selecting features that are appropriate for the prediction model and the unique characteristics of the credit card industry data to ensure the highest possible accuracy and efficiency. This report also covers the integration of the model into the development of a website, which allows related departments to conveniently use the prediction model. Users can upload data for prediction and receive model results instantly. In addition, a dashboard has been created to present insights from the model's predictions, such as identifying high-risk customers likely to cancel services, as well as other important analytical information for strategic decision-making. This will help support more efficient marketing planning and customer retention efforts within the organization.

Read more