
The evaluation of mango yield and consumer behavior reflects an increasing awareness of product origins, with a growing demand for traceability to understand how the produce has been cultivated and managed. This study explores the relationship between mango characteristics and cultivation practices before harvest, using location identification to provide insights into these processes. To achieve this, a model was developed to detect and locate mangoes using 2D images via a Deep Learning approach. The study also investigates techniques to determine the real-world coordinates of mangoes from 2D images. The YOLOv8 model was employed for object detection, integrated with camera calibration and triangulation techniques to estimate the 3D positions of detected mangoes. Experiments involved 125 trials with randomized mango positions and camera placements at varying yaw and pitch angles. Parameters extracted from sequential images were compared to derive the actual 3D positions of the mangoes. The YOLOv8 model demonstrated high performance with prediction metrics of Precision (0.928), Recall (0.901), mAP50 (0.965), mAP50-95 (0.785), and F1-Score (0.914). These results indicate sufficient accuracy for predicting mango positions, with an average positional error of approximately 38 centimeters.
ในปัจจุบัน เทคโนโลยีทางการเกษตรได้รับการพัฒนาอย่างต่อเนื่อง เพื่อเพิ่มประสิทธิภาพในการผลิตและการจัดการผลผลิตอย่างแม่นยำ การตรวจจับตำแหน่งของผลผลิตในพื้นที่เกษตรกรรมถือเป็นหนึ่งในความท้าทายสำคัญที่นักวิจัยและผู้ประกอบการในอุตสาหกรรมเกษตรกรรมต้องการหาทางออก โดยเฉพาะการตรวจจับและการประเมินผลผลิตของผลมะม่วง ที่เป็นผลไม้ที่มีความสำคัญทางเศรษฐกิจในหลายประเทศ ซึ่งประเทศไทยเป็นหนึ่งในผู้ผลิตมะม่วงรายใหญ่ของโลก รวมถึงพฤติกรรมของผู้บริโภคที่มีความตระหนักถึงที่มาของผลผลิตมากยิ่งขึ้น ต้องการตรวจสอบย้อนกลับถึงที่มาของผลผลิตว่าผลผลิตนั้นๆได้รับการดูแลมาอย่างไรผ่านการระบุตำแหน่งของผลนั้นๆ ทั้งเป็นแหล่งข้อมูลที่บ่งบอกถึงลักษะของผลผลิตที่ได้มาได้ผ่านการดูแลรูปแบบใดในขณะที่ยังไม่ถูกเก็บเกี่ยว การพัฒนาเทคนิคในการหาตำแหน่งบนโลกจริง 3 มิติ ของมะม่วงจากข้อมูลภาพ 2 มิติ จึงเป็นเรื่องที่มีความสำคัญอย่างยิ่งในด้านการเกษตร เนื่องจากการตรวจจับและการประเมินผลผลิตในพื้นที่เกษตรกรรมเป็นขั้นตอนสำคัญในการจัดการและการเก็บเกี่ยวผลผลิต เทคนิคที่ใช้ในงานวิจัยนี้คือการผสมผสานระหว่างการสอบเทียบกล้อง (Camera Calibration) การตรวจจับวัตถุจากภาพ 2 มิติเพื่อคำนวณตำแหน่งในมิติ 3 มิติ โดยเทคนิค Triangulation และเทคโนโลยีการตรวจจับภาพที่มีความแม่นยำสูงอย่าง YOLOv8 มาใช้ ซึ่งเป็นโมเดลที่พัฒนาโดยใช้การเรียนรู้เชิงลึก (deep learning) ที่มีประสิทธิภาพในการตรวจจับวัตถุในภาพได้อย่างรวดเร็วและแม่นยำ ทั้งนี้ผู้จัดทำจึงมีแนวคิดที่ต้องการพัฒนาวิธีการหาตำแหน่งของผลมะม่วง เพื่อเพิ่มความสามารถในการประเมินผลผลิตทางการเกษตร ซึ่งเป็นปัจจัยสำคัญในการทำการเกษตรแบบเกษตรแม่นยำ (Precision Agriculture) การใช้เทคโนโลยีที่มีความแม่นยำสูงในการตรวจจับและประมวลผลข้อมูลภาพสามารถช่วยให้การจัดการผลผลิตในภาคเกษตรกรรมมีประสิทธิภาพมากขึ้น การรับรู้ข้อมูลของผลผลิต ลดความผิดพลาดในการประเมิน และความรวดเร็วในการจัดการ นอกจากนี้ยังสามารถนำไปประยุกต์ใช้ในการพัฒนาเทคโนโลยีใหม่ๆ ที่สามารถช่วยเพิ่มผลผลิตในภาคเกษตรกรรมและเสริมสร้างความยั่งยืนในอุตสาหกรรมเกษตรกรรมในอนาคต

คณะวิศวกรรมศาสตร์
Designing advanced printed circuit boards for industrial applications involves a variety of steps and methods depending on each company. From what I have learned, I have used Cadence Allegro to design printed circuit boards. This internship was designed on a variety of boards with varying levels of difficulty. Learning in this internship could not be learned in detail within the university. I had to work with many departments within Analog Devices (Thailand) Company. This design was assisted by a mentor who took care of and taught me the work, allowing me to complete the co-operative successfully.

คณะวิทยาศาสตร์
A smartphone-based colorimetric sensor for quantitative detection of pyridoxine (Vitamin B6, VB-6) in functional drink samples has been realized by developing double layer hydrogel. Electrostatic interaction initiates the cross-linking and produces double layer hydrogel.

คณะอุตสาหกรรมอาหาร
This study focused on the development of an edible film containing Terminalia chebula Retz extract for the treatment of oral ulcers. The film was designed to dissolve in the mouth without the need for swallowing or chewing, which is suitable for people with canker sores or oral inflammation. Terminalia chebula extract has been shown to have several pharmacological properties, including antimicrobial, antioxidant, and anti-inflammatory activities.