
The evaluation of mango yield and consumer behavior reflects an increasing awareness of product origins, with a growing demand for traceability to understand how the produce has been cultivated and managed. This study explores the relationship between mango characteristics and cultivation practices before harvest, using location identification to provide insights into these processes. To achieve this, a model was developed to detect and locate mangoes using 2D images via a Deep Learning approach. The study also investigates techniques to determine the real-world coordinates of mangoes from 2D images. The YOLOv8 model was employed for object detection, integrated with camera calibration and triangulation techniques to estimate the 3D positions of detected mangoes. Experiments involved 125 trials with randomized mango positions and camera placements at varying yaw and pitch angles. Parameters extracted from sequential images were compared to derive the actual 3D positions of the mangoes. The YOLOv8 model demonstrated high performance with prediction metrics of Precision (0.928), Recall (0.901), mAP50 (0.965), mAP50-95 (0.785), and F1-Score (0.914). These results indicate sufficient accuracy for predicting mango positions, with an average positional error of approximately 38 centimeters.
ในปัจจุบัน เทคโนโลยีทางการเกษตรได้รับการพัฒนาอย่างต่อเนื่อง เพื่อเพิ่มประสิทธิภาพในการผลิตและการจัดการผลผลิตอย่างแม่นยำ การตรวจจับตำแหน่งของผลผลิตในพื้นที่เกษตรกรรมถือเป็นหนึ่งในความท้าทายสำคัญที่นักวิจัยและผู้ประกอบการในอุตสาหกรรมเกษตรกรรมต้องการหาทางออก โดยเฉพาะการตรวจจับและการประเมินผลผลิตของผลมะม่วง ที่เป็นผลไม้ที่มีความสำคัญทางเศรษฐกิจในหลายประเทศ ซึ่งประเทศไทยเป็นหนึ่งในผู้ผลิตมะม่วงรายใหญ่ของโลก รวมถึงพฤติกรรมของผู้บริโภคที่มีความตระหนักถึงที่มาของผลผลิตมากยิ่งขึ้น ต้องการตรวจสอบย้อนกลับถึงที่มาของผลผลิตว่าผลผลิตนั้นๆได้รับการดูแลมาอย่างไรผ่านการระบุตำแหน่งของผลนั้นๆ ทั้งเป็นแหล่งข้อมูลที่บ่งบอกถึงลักษะของผลผลิตที่ได้มาได้ผ่านการดูแลรูปแบบใดในขณะที่ยังไม่ถูกเก็บเกี่ยว การพัฒนาเทคนิคในการหาตำแหน่งบนโลกจริง 3 มิติ ของมะม่วงจากข้อมูลภาพ 2 มิติ จึงเป็นเรื่องที่มีความสำคัญอย่างยิ่งในด้านการเกษตร เนื่องจากการตรวจจับและการประเมินผลผลิตในพื้นที่เกษตรกรรมเป็นขั้นตอนสำคัญในการจัดการและการเก็บเกี่ยวผลผลิต เทคนิคที่ใช้ในงานวิจัยนี้คือการผสมผสานระหว่างการสอบเทียบกล้อง (Camera Calibration) การตรวจจับวัตถุจากภาพ 2 มิติเพื่อคำนวณตำแหน่งในมิติ 3 มิติ โดยเทคนิค Triangulation และเทคโนโลยีการตรวจจับภาพที่มีความแม่นยำสูงอย่าง YOLOv8 มาใช้ ซึ่งเป็นโมเดลที่พัฒนาโดยใช้การเรียนรู้เชิงลึก (deep learning) ที่มีประสิทธิภาพในการตรวจจับวัตถุในภาพได้อย่างรวดเร็วและแม่นยำ ทั้งนี้ผู้จัดทำจึงมีแนวคิดที่ต้องการพัฒนาวิธีการหาตำแหน่งของผลมะม่วง เพื่อเพิ่มความสามารถในการประเมินผลผลิตทางการเกษตร ซึ่งเป็นปัจจัยสำคัญในการทำการเกษตรแบบเกษตรแม่นยำ (Precision Agriculture) การใช้เทคโนโลยีที่มีความแม่นยำสูงในการตรวจจับและประมวลผลข้อมูลภาพสามารถช่วยให้การจัดการผลผลิตในภาคเกษตรกรรมมีประสิทธิภาพมากขึ้น การรับรู้ข้อมูลของผลผลิต ลดความผิดพลาดในการประเมิน และความรวดเร็วในการจัดการ นอกจากนี้ยังสามารถนำไปประยุกต์ใช้ในการพัฒนาเทคโนโลยีใหม่ๆ ที่สามารถช่วยเพิ่มผลผลิตในภาคเกษตรกรรมและเสริมสร้างความยั่งยืนในอุตสาหกรรมเกษตรกรรมในอนาคต

คณะเทคโนโลยีการเกษตร
During this cooperative education program at the Bang Bo District Agricultural Office, Samut Prakan Province, a study was conducted on the costs and returns of rice cultivation using chemical inputs compared to using biopesticides in combination with chemical inputs among farmers in Bang Phli Noi Subdistrict, Bang Bo District, Samut Prakan Province.The objectives of this study were: To examine the costs and returns of rice cultivation using chemical inputs compared to using biopesticides in combination with chemical inputs among farmers in Bang Phli Noi Subdistrict, Bang Bo District, Samut Prakan Province. To explore the challenges of using biopesticides in rice cultivation among farmers in Bang Phli Noi Subdistrict, Bang Bo District, Samut Prakan Province. The study found that in the 2024/25 growing season, the total production cost for rice cultivation using biopesticides in combination with chemical inputs was 5,099.50 THB per rai, consisting of variable costs of 4,432.50 THB per rai and fixed costs of 667.00 THB per rai. Meanwhile, the total production cost for rice cultivation using only chemical inputs was 5,129.00 THB per rai, consisting of variable costs of 4,390.00 THB per rai and fixed costs of 739.00 THB per rai. The cost difference between the two methods was 114.50 THB per rai. Regarding the returns on rice cultivation in the 2024/25 growing season, the field using biopesticides in combination with chemical inputs yielded 1,000.00 kilograms per rai, with an average selling price of 8,500.00 THB per rai. Farmers earned a total revenue of 8,585.00 THB per rai and a profit of 3,485.50 THB per rai. On the other hand, the field using only chemical inputs yielded 1,000.00 kilograms per rai, with an average selling price of 8,500.00 THB per rai. Farmers earned a total revenue of 8,500.00 THB per rai and a profit of 3,371.00 THB per rai. The total income difference between the two cultivation methods was 114.50 THB per rai. In terms of challenges related to the procurement of biopesticides, it was found that biopesticides are difficult to obtain, with limited or no availability in certain areas. Additionally, relevant agencies do not provide continuous support for biopesticides, making this the most significant issue. Regarding the use of biopesticides, the most critical challenge is that once fresh biopesticides are mixed, they must be used immediately and cannot be stored, as their effectiveness deteriorates over time.

คณะเทคโนโลยีการเกษตร
-

คณะวิศวกรรมศาสตร์
The project uses artificial intelligence (AI) and deep learning to develop a smart police system (Smart Police) to analyze the identity of individuals and vehicles suspected of involvement in crimes. The system uses CCTV cameras to detect people with concealed weapons and track vehicles involved in crimes. The system also sends alerts to the police when a crime is detected. The Smart Police system is a collaboration between the Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, the Provincial Police Region 2, the Chachoengsao Foundation for Development, and the Smart City Office of Chachoengsao Province. The system is designed to prevent and deter crime, increase public safety and order, and build a network of cooperation between the government, the private sector, and the community. The system is currently under development, but it has the potential to be a valuable tool for law enforcement. The system could help to reduce crime and improve public safety in Chachoengsao Province and other parts of Thailand.