คณะวิทยาศาสตร์
In raising crickets for meat consumption, the growth rate and growth period of crickets are important data used to identify the number of crickets per breeding area at each age. Therefore, the researcher has an idea to create a system for monitoring the growth rate of crickets in a closed system using an infrared camera combined with computer image processing to study the growth and identify the growth period of crickets at each age in order to obtain knowledge that can be disseminated to farmers to improve the breeding process for maximum efficiency.
วิทยาเขตชุมพรเขตรอุดมศักดิ์
Durian is an important economic crop in Thailand that is affected by foliar diseases such as rust, leaf blight, and leaf spot. These diseases reduce the quality of the yield and increase management costs. This research focuses on developing AI software for screening durian leaf diseases by applying deep learning technology to classify different types of leaf lesions.
คณะวิศวกรรมศาสตร์
The designing of mosquitoes counting system instrument is presented in this work. The mosquitoes that were counted died in order not to measure duplicate counting data. As soon as the input source counting machine can detect the mosquito, the single trigger signal is transmitted to the IOT system to interrupt the server immediately. The number of real mosquito is not transmitting to the IOT but only a signal to interrupt the server. The server records the number of the interrupt signal with real-time clock. Then the interrupt information will be further handled. The front end counting machine consist of the high voltage generate with the suitable voltage value and electrode distance for the required mosquitoes size. The low trigger pulse signals of the mosquitoes killed by high voltage are sending to the controller unit. Immediately, interrupt counting signal of the number of mosquitoes is sent to the big stream data collection on IOT system by the time stamp technique. Form the measurement results, 10 live sample mosquitoes in a limited space box to fly though the counting machine show that the count results are 100% correct count.
วิทยาเขตชุมพรเขตรอุดมศักดิ์
This project aims to design and develop a propulsion system for agricultural equipment using RFID technology and evaluate its movement performance on different surfaces, including concrete and grass. The experiment focuses on examining the tag detection range under transmission power levels of 20 dBm, 23 dBm, and 26 dBm, as well as the impact of antenna angles on detection efficiency. Additionally, the system was tested in three movement scenarios: straight path, left turn, and right turn, at distances of 2 meters, 4 meters, and 6 meters. The results indicate that the system achieved the highest average speed of 0.4736 m/s and an average turning angle of 91.6° when moving in a straight path on a concrete surface at a distance of 4 meters. On a grass surface at the same distance, the average speed was 0.4483 m/s, with an average turning angle of 91.1°. For left and right turns, the movement on the concrete surface generally exhibited a higher average speed than on grass, particularly at a distance of 4 meters, where differences in turning angles were observed. This study provides insights into the factors affecting the movement of agricultural mowing equipment and serves as a foundation for enhancing the efficiency of propulsion systems in future developments.
คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี
Ballet dancing requires clear and precise body gestures. To raise standard and motivation for Thai ballet dancers, this testing console is developed such that dancers and beginners are able to learn and keep track of their dancing progress. Their gestures can be compared with internationally recognized ballet dancers without face-to-face learning. This enables self-development according to their purposes and pace. The portable console is easy to use. Connect it to a monitor, turn on, and enjoy.
คณะเทคโนโลยีสารสนเทศ
KinderForest : Puzzle Building Game with VR Technology is designed to utilize Virtual Reality (VR) technology with the primary aim of promoting creative problem-solving skills and basic practical application abilities among players. This project presents the game in an Augmented Virtual Reality (AR VR) format, emphasizing physical engagement of players during gameplay while fostering creativity and fundamental application skills. The project team has chosen to utilize Unreal Engine 5.1 and Oculus Quest 2 virtual reality glasses to develop the game in the form of augmented virtual reality technology. Within the game, there will be various levels that require creative thinking and different approaches to pass. Time constraints will be a crucial element in completing missions and progressing through these levels. Players will physically move their bodies in response to in-game movements. Each level will present unique challenges that will necessitate both physical movement and problem-solving skills. The game will provide different rewards based on the outcomes of mission completion, and players will be informed of their results once they have successfully passed a level.
คณะเทคโนโลยีสารสนเทศ
Nowadays, assembling a computer is considered something close to many people. Everyone has a chance to catch it. which knowledge of various components of computers and skills in assembling computers. These 2 things mentioned above are things that the general public should have basic knowledge and understanding about. For the self-assembly of computers, We therefore would like to provide knowledge to the general public who wants to learn how to assemble a computer, including information about its components. Through presentation in the form of learning media using VR technology, which will help reduce the problem of errors. and resources used in assembly Ready to create excitement for users by simulating computer assembly for users to interact within the virtual world. experience and provide knowledge before actually putting it into practice with real equipment This project was therefore created for those interested in assembling computers. Especially for people who have no experience in computer assembly. Including people who would like to have the opportunity to try building a computer by themselves.
คณะเทคโนโลยีการเกษตร
Durian is a crucial economic crop of Thailand and one of the most exported agricultural products in the world. However, producing high-quality durian requires maintaining the health of durian trees, ensuring they remain strong and disease-free to optimize productivity and minimize potential damage to both the tree and its fruit. Among the various diseases affecting durian, foliar diseases are among the most common and rapidly spreading, directly impacting tree growth and fruit quality. Therefore, monitoring and controlling leaf diseases is essential for preserving durian quality. This study aims to apply image analysis technology combined with artificial intelligence (AI) to classify diseases in durian leaves, enabling farmers to diagnose diseases independently without relying on experts. The classification includes three categories: healthy leaves (H), leaves infected with anthracnose (A), and leaves affected by algal spot (S). To develop the classification model, convolutional neural network (CNN) algorithms—ResNet-50, GoogleNet, and AlexNet—were employed. Experimental results indicate that the classification accuracy of ResNet-50, GoogleNet, and AlexNet is 93.57%, 93.95%, and 68.69%, respectively.
คณะวิทยาศาสตร์
With the development of space technology, wide-field sky surveys using telescopes have expanded the range of new data available for time-domain astronomical research. Traditional data analysis methods can no longer respond quickly and accurately enough to the growing volume of data. Thus, classifying time-series data, such as light curves, has become a significant challenge in the era of big data. In modern times, analyzing light curves has become essential for using machine learning techniques to handle and filter through massive amounts of data. Machine learning algorithms can be divided into two categories: shallow learning and deep learning. Numerous researchers have proposed and developed a variety of algorithms for light curve classification. In this study, we experimented with Support Vector Machine (SVM) and XGBoost, which are shallow machine learning algorithms, as well as 1D-CNN and Long Short-Term Memory (LSTM), which are deep learning algorithms, which are branches of deep machine learning, to classify variable stars. The training and testing data used in this study were from the Optical Gravitational Lensing Experiment-III (OGLE-III), consisting of variable star data from the Large Magellanic Cloud (LMC), categorized into five main classes: Classical Cepheids, δ Scutis, eclipsing binaries, RR Lyrae stars, and Long-period variables. The results demonstrate the performance analysis of each machine learning algorithm type applied to light curve data, while also highlighting the accuracy and statistical metrics of the algorithms used in the experiments.