KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Real time mosquito counter by ripple detection system

Abstract

The designing of mosquitoes counting system instrument is presented in this work. The mosquitoes that were counted died in order not to measure duplicate counting data. As soon as the input source counting machine can detect the mosquito, the single trigger signal is transmitted to the IOT system to interrupt the server immediately. The number of real mosquito is not transmitting to the IOT but only a signal to interrupt the server. The server records the number of the interrupt signal with real-time clock. Then the interrupt information will be further handled. The front end counting machine consist of the high voltage generate with the suitable voltage value and electrode distance for the required mosquitoes size. The low trigger pulse signals of the mosquitoes killed by high voltage are sending to the controller unit. Immediately, interrupt counting signal of the number of mosquitoes is sent to the big stream data collection on IOT system by the time stamp technique. Form the measurement results, 10 live sample mosquitoes in a limited space box to fly though the counting machine show that the count results are 100% correct count.

Objective

ประเทศไทยประสบกับปัญหาการแพร่ระบาดของโรคที่มียุงเป็นพาหะนำโรคมานาน เช่น ไข้มาราเลีย โรคไข้เลือดออก โรคเท้าช้าง เป็นต้น โรคไข้เลือดออกถูกพบขึ้นครั้งแรกในประเทศไทยในปี พ.ศ. 2492 ข้อมูลรายงานสถานการณ์โรคไข้เลือดออกตั้งแต่ปี พ.ศ. 2558 ถึงปี พ.ศ. 2563 พบว่ามีผู้ป่วยสูงสุดในปี 2562 ซึ่งพบผู้ป่วยสูงถึง 18,105 รายโดยภาครัฐไม่ได้นิ่งนอนใจเกี่ยวกับปัญหาที่เกิดขึ้นและได้ทำการสนับสนุนนวัตกรรมที่จะเข้ามาช่วยจัดการกับปัญหาดังกล่าว

Other Innovations

Recommence

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Recommence

A natural representation of new beginnings.

Read more
Electrochemical Synthesis of Drug Molecules

คณะวิทยาศาสตร์

Electrochemical Synthesis of Drug Molecules

The synthesis using electrons as reagents instead of oxidants is a method for synthesizing drug molecules in a way that reduces the use of chemicals, thereby minimizing environmental pollution.

Read more
Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

คณะเทคโนโลยีการเกษตร

Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

Durian is a crucial economic crop of Thailand and one of the most exported agricultural products in the world. However, producing high-quality durian requires maintaining the health of durian trees, ensuring they remain strong and disease-free to optimize productivity and minimize potential damage to both the tree and its fruit. Among the various diseases affecting durian, foliar diseases are among the most common and rapidly spreading, directly impacting tree growth and fruit quality. Therefore, monitoring and controlling leaf diseases is essential for preserving durian quality. This study aims to apply image analysis technology combined with artificial intelligence (AI) to classify diseases in durian leaves, enabling farmers to diagnose diseases independently without relying on experts. The classification includes three categories: healthy leaves (H), leaves infected with anthracnose (A), and leaves affected by algal spot (S). To develop the classification model, convolutional neural network (CNN) algorithms—ResNet-50, GoogleNet, and AlexNet—were employed. Experimental results indicate that the classification accuracy of ResNet-50, GoogleNet, and AlexNet is 93.57%, 93.95%, and 68.69%, respectively.

Read more