KMITL Innovation Expo 2025 Logo

Investigation variable star classification through light curve analysis using machine learning approach

Abstract

With the development of space technology, wide-field sky surveys using telescopes have expanded the range of new data available for time-domain astronomical research. Traditional data analysis methods can no longer respond quickly and accurately enough to the growing volume of data. Thus, classifying time-series data, such as light curves, has become a significant challenge in the era of big data. In modern times, analyzing light curves has become essential for using machine learning techniques to handle and filter through massive amounts of data. Machine learning algorithms can be divided into two categories: shallow learning and deep learning. Numerous researchers have proposed and developed a variety of algorithms for light curve classification. In this study, we experimented with Support Vector Machine (SVM) and XGBoost, which are shallow machine learning algorithms, as well as 1D-CNN and Long Short-Term Memory (LSTM), which are deep learning algorithms, which are branches of deep machine learning, to classify variable stars. The training and testing data used in this study were from the Optical Gravitational Lensing Experiment-III (OGLE-III), consisting of variable star data from the Large Magellanic Cloud (LMC), categorized into five main classes: Classical Cepheids, δ Scutis, eclipsing binaries, RR Lyrae stars, and Long-period variables. The results demonstrate the performance analysis of each machine learning algorithm type applied to light curve data, while also highlighting the accuracy and statistical metrics of the algorithms used in the experiments.

Objective

ในงานนี้เราได้เสนอการใช้อัลกอริทึมการเรียนรู้ของเครื่องที่ทำการแบ่งอัลกอริทึมได้เป็น 2 ประเภท คือ แบบตื้นและแบบลึกมาทดสอบประสิทธิภาพโดยแบบตื้นมีมีอัลกอริทึม Support Vector Machine (SVM) และ XGBoost แบบลึกมีอัลกอริทึม 1D-CNN และ Long Short-Term Memory (LSTM) เราพิจารณาข้อมูลการสังเกตที่ได้จากฐานข้อมูล Optical Gravitational Lensing Experiment-III (OGLE-III) ที่เป็นดาวแปรแสงในพื้นที่ Large Magellanic Cloud (LMC) ด้วยกล้องโทรทรรศน์ขนาด 1.3-m Warsaw ที่ติดตั้งที่หอดูดาวลาสคัมปานัส ประเทศชิลี ข้อมูลนี้ประกอบด้วยการสังเกตดาวแปรแสงมากกว่าหนึ่งแสนครั้งโดยพิจารณาจากกราฟแสง และใช้ข้อมูลสถิติต่างๆ เช่น Accuracy, Precision, Recall, F1-score, AUG, mPa, mcc และ kappa ซึ่งงานวิจัยนี้มีจุดมุ่งหมายเพื่อที่จะทดสอบประสิทธิภาพในการจำแนกประเภทของดาวแปรแสงโดยใช้ข้อมูลการวิเคราะห์ light curve ด้วยเทคนิคการเรียนรู้ของเครื่องทั้งสองประเภท เพื่อให้เห็นถึงความเข้าใจในลักษณะและพฤติกรรมของดาวแปรแสง ซึ่งใช้ในประโยชน์ต่างๆ เช่น ความรู้ในด้านดาราศาสตร์ฟิสิกส์หรือการค้นพบดาวเคราะห์ดวงใหม่ๆ และการป้องกันภัยจากดาวแปรแสงมีอาจจะมีผลกระทบต่อโลก อีกทั้งในเรื่องการประหยัดเวลาและทรัพยากรในการที่จะจำแนกประเภทดาวแปรแสงอย่างมีระบบและมีประสิทธิภาพ

Other Innovations

Ionospheric Total Electron Content Measuring Instrument by Using Single Frequency GPS Satellite

คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี

Ionospheric Total Electron Content Measuring Instrument by Using Single Frequency GPS Satellite

This project presents the development of a single-frequency GPS-based total electron content measurement tool. It applies theories related to total electron content in the ionospheric layer and the measurement of total electron content using GPS time delay to design the single-frequency GPS total electron content measurement tool. The tool consists of an antenna, a single-frequency GPS satellite receiver, a data processing unit for evaluating and calculating total electron content, and a display unit for showing total electron content data. The performance of the single-frequency GPS total electron content measurement tool is tested by comparing it with total electron content data obtained from the International Reference Ionosphere (IRI) model, which is a global reference model for electron content. The tool is also put to practical use. The results of the comparison and practical applications conclude that the single-frequency GPS-based total electron content measurement tool can be effectively utilized, with the difference from the IRI model being 50 TECU

Read more
Interior architectural design proposal project for Retail shop  and Exhibition to support agriculturist, Kachatthai, Surin Province

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Interior architectural design proposal project for Retail shop and Exhibition to support agriculturist, Kachatthai, Surin Province

The Kachatthai Project in Surin Province has been developed as a space to promote and generate income for farmers, incorporating a design concept that reflects the unique identity of Surin Province as its main guideline.

Read more
Study on the Efficiency of Lime in Increasing  Alkalinity in White Shrimp (Litopenaeus vannamei) Culture

คณะเทคโนโลยีการเกษตร

Study on the Efficiency of Lime in Increasing Alkalinity in White Shrimp (Litopenaeus vannamei) Culture

This study aimed to investigate the efficacy of lime containing more than 50% calcium oxide and not less than 29% magnesium oxide in enhancing water alkalinity for Pacific White Shrimp (Litopenaeus vannamei) aquaculture. The experiment was conducted at concentrations of 0, 5, 10, 15, and 20 ppm over a 48-hour period, with data collected at 0, 3, 6, 12, 24, 36, and 48 hours. Results demonstrated that lime exhibited high dissolution efficiency (65-86%) within the first hour and reached complete dissolution (98.5-98.6%) within 6 hours. The pH values initially increased proportionally with lime concentration, gradually decreased during 3-12 hours, before stabilizing. Total alkalinity showed significant increase during the first 3-6 hours and remained stable until the end of the experiment. Statistical analysis revealed that both concentration and time significantly affected all parameters (p < 0.001)

Read more