With the development of space technology, wide-field sky surveys using telescopes have expanded the range of new data available for time-domain astronomical research. Traditional data analysis methods can no longer respond quickly and accurately enough to the growing volume of data. Thus, classifying time-series data, such as light curves, has become a significant challenge in the era of big data. In modern times, analyzing light curves has become essential for using machine learning techniques to handle and filter through massive amounts of data. Machine learning algorithms can be divided into two categories: shallow learning and deep learning. Numerous researchers have proposed and developed a variety of algorithms for light curve classification. In this study, we experimented with Support Vector Machine (SVM) and XGBoost, which are shallow machine learning algorithms, as well as 1D-CNN and Long Short-Term Memory (LSTM), which are deep learning algorithms, which are branches of deep machine learning, to classify variable stars. The training and testing data used in this study were from the Optical Gravitational Lensing Experiment-III (OGLE-III), consisting of variable star data from the Large Magellanic Cloud (LMC), categorized into five main classes: Classical Cepheids, δ Scutis, eclipsing binaries, RR Lyrae stars, and Long-period variables. The results demonstrate the performance analysis of each machine learning algorithm type applied to light curve data, while also highlighting the accuracy and statistical metrics of the algorithms used in the experiments.
ในงานนี้เราได้เสนอการใช้อัลกอริทึมการเรียนรู้ของเครื่องที่ทำการแบ่งอัลกอริทึมได้เป็น 2 ประเภท คือ แบบตื้นและแบบลึกมาทดสอบประสิทธิภาพโดยแบบตื้นมีมีอัลกอริทึม Support Vector Machine (SVM) และ XGBoost แบบลึกมีอัลกอริทึม 1D-CNN และ Long Short-Term Memory (LSTM) เราพิจารณาข้อมูลการสังเกตที่ได้จากฐานข้อมูล Optical Gravitational Lensing Experiment-III (OGLE-III) ที่เป็นดาวแปรแสงในพื้นที่ Large Magellanic Cloud (LMC) ด้วยกล้องโทรทรรศน์ขนาด 1.3-m Warsaw ที่ติดตั้งที่หอดูดาวลาสคัมปานัส ประเทศชิลี ข้อมูลนี้ประกอบด้วยการสังเกตดาวแปรแสงมากกว่าหนึ่งแสนครั้งโดยพิจารณาจากกราฟแสง และใช้ข้อมูลสถิติต่างๆ เช่น Accuracy, Precision, Recall, F1-score, AUG, mPa, mcc และ kappa ซึ่งงานวิจัยนี้มีจุดมุ่งหมายเพื่อที่จะทดสอบประสิทธิภาพในการจำแนกประเภทของดาวแปรแสงโดยใช้ข้อมูลการวิเคราะห์ light curve ด้วยเทคนิคการเรียนรู้ของเครื่องทั้งสองประเภท เพื่อให้เห็นถึงความเข้าใจในลักษณะและพฤติกรรมของดาวแปรแสง ซึ่งใช้ในประโยชน์ต่างๆ เช่น ความรู้ในด้านดาราศาสตร์ฟิสิกส์หรือการค้นพบดาวเคราะห์ดวงใหม่ๆ และการป้องกันภัยจากดาวแปรแสงมีอาจจะมีผลกระทบต่อโลก อีกทั้งในเรื่องการประหยัดเวลาและทรัพยากรในการที่จะจำแนกประเภทดาวแปรแสงอย่างมีระบบและมีประสิทธิภาพ
คณะเทคโนโลยีการเกษตร
The Public park project : Ancient Sea Park. This's a new park in Aangsila Chonburi make for learn and travel in concept The sea in 65 million years ago.
คณะวิศวกรรมศาสตร์
This Project has been undertaken to address the need for skill development and knowledge enhancement in pneumatic systems and automation control, which are crucial in today’s manufacturing industry. Pneumatic systems play a vital role in various production processes, including machine control, automated devices, and assembly lines. However, the Department of Measurement and Control Engineering currently lacks a laboratory dedicated to the study and experimentation of pneumatic systems due to the deterioration and lack of maintenance of the previously used equipment. This has resulted in students missing the opportunity to practice essential skills required in the industrial sector. The authors of this thesis recognize the necessity of reviving and developing a pneumatic laboratory that can effectively support teaching, learning, and research activities. This project focuses on studying and developing industrial robotic arm control systems and pneumatic systems, integrating modern technologies such as Programmable Logic Controllers (PLC) and AI Vision. These systems are intended to be applicable to real-world industrial contexts. The outcomes of this project are expected to not only enhance the understanding of relevant technologies but also aim to transform the laboratory into a vital learning hub for current and future students. Furthermore, this initiative seeks to improve the competitiveness of students in the job market and support the development of innovations in the manufacturing industry in the years to come.
คณะเทคโนโลยีการเกษตร
This research aims to evaluate the efficiency of nano-type oxygen diffusers at different pump power levels in sea bass nursery ponds. The study examines how varying power levels affect dissolved oxygen distribution in the water and their impact on the health, growth, and survival rates of sea bass. The findings indicate that pump power levels influence dissolved oxygen concentration, with the optimal power level improving oxygen distribution in the pond. This enhancement leads to higher survival and growth rates for sea bass. The results provide valuable insights for selecting appropriate oxygen diffusers and pump power levels in fish nursery pond systems. The experiment consisted of two conditions: 1. Without fish – This condition assessed the oxygenation capacity, oxygen transfer coefficient, oxygen transfer rate, and oxygen transfer efficiency of pumps at three different power levels. 2. With fish – This condition evaluated whether the oxygen supplied by pumps at three power levels was sufficient, based on the growth rate and survival rate of the fish in the pond. Blood counts were conducted to assess the immune response. The collected data were statistically analyzed using the RCBD method for the condition without fish and the CRD method for the condition with fish, employing SPSS software.