With the development of space technology, wide-field sky surveys using telescopes have expanded the range of new data available for time-domain astronomical research. Traditional data analysis methods can no longer respond quickly and accurately enough to the growing volume of data. Thus, classifying time-series data, such as light curves, has become a significant challenge in the era of big data. In modern times, analyzing light curves has become essential for using machine learning techniques to handle and filter through massive amounts of data. Machine learning algorithms can be divided into two categories: shallow learning and deep learning. Numerous researchers have proposed and developed a variety of algorithms for light curve classification. In this study, we experimented with Support Vector Machine (SVM) and XGBoost, which are shallow machine learning algorithms, as well as 1D-CNN and Long Short-Term Memory (LSTM), which are deep learning algorithms, which are branches of deep machine learning, to classify variable stars. The training and testing data used in this study were from the Optical Gravitational Lensing Experiment-III (OGLE-III), consisting of variable star data from the Large Magellanic Cloud (LMC), categorized into five main classes: Classical Cepheids, δ Scutis, eclipsing binaries, RR Lyrae stars, and Long-period variables. The results demonstrate the performance analysis of each machine learning algorithm type applied to light curve data, while also highlighting the accuracy and statistical metrics of the algorithms used in the experiments.
ในงานนี้เราได้เสนอการใช้อัลกอริทึมการเรียนรู้ของเครื่องที่ทำการแบ่งอัลกอริทึมได้เป็น 2 ประเภท คือ แบบตื้นและแบบลึกมาทดสอบประสิทธิภาพโดยแบบตื้นมีมีอัลกอริทึม Support Vector Machine (SVM) และ XGBoost แบบลึกมีอัลกอริทึม 1D-CNN และ Long Short-Term Memory (LSTM) เราพิจารณาข้อมูลการสังเกตที่ได้จากฐานข้อมูล Optical Gravitational Lensing Experiment-III (OGLE-III) ที่เป็นดาวแปรแสงในพื้นที่ Large Magellanic Cloud (LMC) ด้วยกล้องโทรทรรศน์ขนาด 1.3-m Warsaw ที่ติดตั้งที่หอดูดาวลาสคัมปานัส ประเทศชิลี ข้อมูลนี้ประกอบด้วยการสังเกตดาวแปรแสงมากกว่าหนึ่งแสนครั้งโดยพิจารณาจากกราฟแสง และใช้ข้อมูลสถิติต่างๆ เช่น Accuracy, Precision, Recall, F1-score, AUG, mPa, mcc และ kappa ซึ่งงานวิจัยนี้มีจุดมุ่งหมายเพื่อที่จะทดสอบประสิทธิภาพในการจำแนกประเภทของดาวแปรแสงโดยใช้ข้อมูลการวิเคราะห์ light curve ด้วยเทคนิคการเรียนรู้ของเครื่องทั้งสองประเภท เพื่อให้เห็นถึงความเข้าใจในลักษณะและพฤติกรรมของดาวแปรแสง ซึ่งใช้ในประโยชน์ต่างๆ เช่น ความรู้ในด้านดาราศาสตร์ฟิสิกส์หรือการค้นพบดาวเคราะห์ดวงใหม่ๆ และการป้องกันภัยจากดาวแปรแสงมีอาจจะมีผลกระทบต่อโลก อีกทั้งในเรื่องการประหยัดเวลาและทรัพยากรในการที่จะจำแนกประเภทดาวแปรแสงอย่างมีระบบและมีประสิทธิภาพ

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
From the current situation and uncertainty; leads to the concept of food security. It is the application of innovation and technology to create high productivity in a limited area. The unused buildings in urban areas were renovated for planting, created as a learning area for planting in urban area. The different methods of growing plants were presented. There are 35 planting innovations for disseminating knowledge, to create food security, self-reliant, supports sustainable living.

คณะเทคโนโลยีสารสนเทศ
Facial Expression Recognition (FER) has attracted considerable attention in fields such as healthcare, customer service, and behavior analysis. However, challenges remain in developing a robust system capable of adapting to various environments and dynamic situations. In this study, the researchers introduced an Ensemble Learning approach to merge outputs from multiple models trained in specific conditions, allowing the system to retain old information while efficiently learning new data. This technique is advantageous in terms of training time and resource usage, as it reduces the need to retrain a new model entirely when faced with new conditions. Instead, new specialized models can be added to the Ensemble system with minimal resource requirements. The study explores two main approaches to Ensemble Learning: averaging outputs from dedicated models trained under specific scenarios and using Mixture of Experts (MoE), a technique that combines multiple models each specialized in different situations. Experimental results showed that Mixture of Experts (MoE) performs more effectively than the Averaging Ensemble method for emotion classification in all scenarios. The MoE system achieved an average accuracy of 84.41% on the CK+ dataset, 54.20% on Oulu-CASIA, and 61.66% on RAVDESS, surpassing the 71.64%, 44.99%, and 57.60% achieved by Averaging Ensemble in these datasets, respectively. These results demonstrate MoE’s ability to accurately select the model specialized for each specific scenario, enhancing the system’s capacity to handle more complex environments.

คณะอุตสาหกรรมอาหาร
This study aims to investigate the encapsulation of anthocyanins in water-in-oil-in-water (W/O/W) emulsions and their spray-drying process to enhance anthocyanin stability against external factors such as light, temperature, and pH changes. The W/O/W emulsion was prepared using suitable surfactants and dried using a spray dryer at an inlet temperature of 120–140°C and an outlet temperature not lower than 80°C. The results showed that the composition ratios of water, oil, and surfactants significantly influenced the physical and chemical properties of the emulsion, as well as the encapsulation efficiency of anthocyanins. The spray-dried W/O/W emulsion demonstrated effective anthocyanin retention and improved long-term stability, making it applicable for food and health-related products.