Durian is an important economic crop in Thailand that is affected by foliar diseases such as rust, leaf blight, and leaf spot. These diseases reduce the quality of the yield and increase management costs. This research focuses on developing AI software for screening durian leaf diseases by applying deep learning technology to classify different types of leaf lesions.
ทุเรียนเป็นพืชเศรษฐกิจสำคัญของประเทศไทยที่มีมูลค่าทางเศรษฐกิจสูงและเป็นที่ต้องการเพิ่มขึ้นอย่างต่อเนื่อง อย่างไรก็ตาม การแพร่ระบาดของโรคทางใบ เช่น โรคใบสนิม โรคใบไหม้ และโรคใบจุด ซึ่งส่งผลต่อการเจริญเติบโตและสุขภาพของต้นโดยรวม ทำให้ผลผลิตลดลงหรือผลทุเรียนอาจมีขนาดเล็กและคุณภาพต่ำ ปัจจุบันเกษตรกรยังคงประสบปัญหาในการวินิจฉัยโรค เนื่องจากอาการของโรคมีความคล้ายคลึงกัน ซึ่งอาจนำไปสู่การรักษาที่ผิดพลาด อีกทั้งข้อจำกัดในการเข้าถึงผู้เชี่ยวชาญยังทำให้การควบคุมโรคขาดประสิทธิภาพ การพัฒนาซอฟต์แวร์ AI สำหรับตรวจคัดกรองโรคจากใบทุเรียน พร้อมระบุวิธีการดูแลรักษาจึงเป็นทางออกที่สำคัญ เทคโนโลยีนี้จะช่วยให้เกษตรกรสามารถวินิจฉัยโรคได้อย่างรวดเร็วและแม่นยำ โดยไม่ต้องใช้เครื่องมือที่ซับซ้อนหรือต้องพึ่งพาผู้เชี่ยวชาญโดยตรง อีกทั้งยังให้คำแนะนำในการรักษาและป้องกันที่เหมาะสม ลดความผิดพลาดในการจัดการโรค และเพิ่มประสิทธิภาพการดูแลสวนทุเรียน นวัตกรรมนี้จะช่วยส่งเสริมการผลิตที่ยั่งยืน ลดต้นทุน และเพิ่มผลผลิตให้กับเกษตรกรไทยในระยะยาว
คณะวิศวกรรมศาสตร์
This cooperative education project aims to enhance the efficiency of Hydrogen Manufacturing Unit 2 (HMU-2) and Pressure Swing Adsorption 3 (PSA-3) by using AVEVA Pro/II process modeling and a Machine Learning model for process simulation. The study found that the AVEVA Pro/II model predicted outcomes with deviations ranging from 0–35%, including a hydrogen flow rate deviation from the PSA unit of 12%, exceeding the company’s acceptable limit of 10%. To address this, a Machine Learning model based on the Random Forest algorithm was developed with hyperparameter tuning. The Machine Learning model demonstrated high accuracy, achieving Mean Squared Errors (MSE) of 8.48 and 0.18 for process and laboratory data, respectively, and R-squared values of 0.98 and 0.88 for the same datasets. It outperformed the AVEVA Pro/II model in predicting all variables and reduced the hydrogen flow rate deviation to 4.75% and 1.35% for production rates of 180 and 220 tons per day, respectively. Optimization using the model provided recommendations for process adjustments, increasing hydrogen production by 7.8 tons per day and generating an additional annual profit of 850,966.23 Baht.
วิทยาเขตชุมพรเขตรอุดมศักดิ์
This project focuses on developing a work tracking system for team members. Python is used to extract data from Excel files and import it into a SQL Server database for systematic data management. The system includes a function to notify task status via LINE and displays reports via Power BI, allowing supervisors to track progress and evaluate team members' performance efficiently. Additionally, the system helps promote work and time management skills for team members.
คณะอุตสาหกรรมอาหาร
The Ginbanirose project aims to develop herbal extracts for alleviating menstrual pain using key ingredients: roselle, banana inflorescence, and ginger. These ingredients contain bioactive compounds with anti-inflammatory, antioxidant, and pain-relieving properties. The extracts are enhanced through liposome encapsulation technology, which improves absorption and stability. The production process involves herbal extraction, freeze-drying, and liposome formulation using lecithin and stabilizers. Experimental results demonstrate high phenolic content and antioxidant activity via the DPPH method. Ginbanirose addresses women’s quality of life concerns while offering significant business opportunities in the rapidly growing herbal market, particularly in the Asia-Pacific region.