KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Smart system for tracking raising rate of crickets using infrared camera

Smart system for tracking raising rate of crickets using infrared camera

Abstract

In raising crickets for meat consumption, the growth rate and growth period of crickets are important data used to identify the number of crickets per breeding area at each age. Therefore, the researcher has an idea to create a system for monitoring the growth rate of crickets in a closed system using an infrared camera combined with computer image processing to study the growth and identify the growth period of crickets at each age in order to obtain knowledge that can be disseminated to farmers to improve the breeding process for maximum efficiency.

Objective

ปัจจุบันจิ้งหรีดถือได้ว่าเป็นสัตว์เศรษฐกิจชนิดใหม่ของประเทศไทยซึ่งทางภาครัฐโดยเฉพาะกรมปศุสัตว์ได้เริ่มมีการส่งเสริมให้ภาคการเกษตรได้เพาะเลี้ยงจิ้งหรีดเพื่อการบริโภคสำหรับการส่งออก และเป็นการตอบรับกับเทรนด์อุตสาหกรรมอาหารใหม่ (Novel food) ตามแนวทางขององค์การอาหาร และเกษตรแห่งสหประชาชาติ (FAO : Food and Agriculture Organization) ซึ่งคาดการณ์เอาไว้ว่าจำนวนประชากรโลกจะเพิ่มขึ้นอย่างต่อเนื่องทำให้ความต้องการแหล่งโปรตีนมีมากขึ้นตามไปด้วย คณะผู้วิจัยจึงมีแนวความคิดที่จะหาสร้างระบบเลี้ยงจิ้งหรีดที่มีประสิทธิภาพ

Other Innovations

THE BRAIN ACTIVATION ON UPPER EXTREMITY MOTOR CONTROL TASKS IN DIFFERENT FORCES LEVELS

คณะวิศวกรรมศาสตร์

THE BRAIN ACTIVATION ON UPPER EXTREMITY MOTOR CONTROL TASKS IN DIFFERENT FORCES LEVELS

Motor control is a critical process for muscle contraction, which is initiated by nerve impulses governed by the motor cortex. This process is vital for performing activities of daily living (ADLs). Consequently, a disruption in communication between the brain and muscles, as seen in various chronic conditions and diseases, can impair bodily movement and ADLs. Evaluating the interaction between brain function and motor control is significant for the diagnosis and treatment of motor control disorders; moreover, it can contribute to the development of brain-computer interfaces (BCIs). The purpose of this study is to investigate brain activation in designed upper extremity motor control tasks in regulating the pushing force in different brain regions; and develop investigation methods to assess motor control tasks and brain activation using a robotic arm to guide upper extremity force and motor control. Eighteen healthy young adults were asked to perform upper extremity motor control tasks and recorded the hemodynamic signals. Functional Near-Infrared Spectroscopy (fNIRs) and robotic arms were used to assess brain activation and the regulation of pushing force and extremity motor control. Two types of motion, static and dynamic, move along a designated trajectory in both forward and backward directions, and three different force levels selected from a range of ADLs, including 4, 12, and 20 N, were used as force-regulating upper extremity motor control tasks. The hemodynamic responses were measured in specific regions of interest, namely the primary motor cortex (M1), premotor cortex (PMC), supplementary motor area (SMA), and prefrontal cortex (PFC). Utilizing a two-way repeated measures ANOVA with Bonferroni correction (p < 0.00625) across all regions, we observed no significant interaction effect between force levels and movement types on oxygenated hemoglobin (HbO) levels. However, in both contralateral (c) and ipsilateral (i) PFC, movement type—static versus dynamic—significantly affected brain activation. Additionally, cM1, iPFC, and PMC showed a significant effect of force level on brain activation.

Read more
A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

คณะวิทยาศาสตร์

A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

This special problem aims to compare the performance of machine learning methods in time series forecasting using lagged time periods as independent variables. The lagged periods are categorized into three groups: lagged by 10 units, lagged by 15 units, and lagged by 20 units. The study employs four machine learning methods: Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The time series data simulated as independent variables diverse including characteristics: Random Walk data, Trending data, and Non-Linear data, with sample sizes of 100, 300, 500, and 700. The research methodology involves splitting the data into 90% for training and 10% for testing. Simulations and analysis are performed using the R programming language, with 1,000 iterations conducted. The results are evaluated based on the average mean squared error (AMSE) and the average mean absolute percentage error (AMAPE) are calculated to identify the best performing method. The research findings revealed that for Random Walk data, the best performing methods are Random Forest and Support Vector Machine. For Trend data, the best performing methods are Random Forest. For Non-Linear data, the best performing methods are Support Vector Machine. When tested with real-world data, the results show that for the Euro-to-Thai Baht exchange rate, the best methods are Random Forest and Support Vector Machine. For the S&P 500 Index in USD, the best performing methods are Random Forest. For the Bank of America Corp Index in USD, the best performing methods are Support Vector Machine.

Read more
Process development of healthy snack products from germinated brown rice flour and banana flour using the extrusion process

คณะอุตสาหกรรมอาหาร

Process development of healthy snack products from germinated brown rice flour and banana flour using the extrusion process

This study aimed to develop a formula and production process for snacks made from germinated brown rice flour and banana flour using the extrusion process. The results indicated that both germinated brown rice flour and banana flour could be effectively used as the main raw materials for snack production via extrusion. The proportion of flour in the formula and production conditions, such as moisture content of the raw materials, barrel temperature, and screw speed, significantly influenced the nutritional value, bioactive compound levels, and antioxidant activity of the final products.

Read more