KMITL Innovation Expo 2025 Logo

Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

Abstract

Durian is a crucial economic crop of Thailand and one of the most exported agricultural products in the world. However, producing high-quality durian requires maintaining the health of durian trees, ensuring they remain strong and disease-free to optimize productivity and minimize potential damage to both the tree and its fruit. Among the various diseases affecting durian, foliar diseases are among the most common and rapidly spreading, directly impacting tree growth and fruit quality. Therefore, monitoring and controlling leaf diseases is essential for preserving durian quality. This study aims to apply image analysis technology combined with artificial intelligence (AI) to classify diseases in durian leaves, enabling farmers to diagnose diseases independently without relying on experts. The classification includes three categories: healthy leaves (H), leaves infected with anthracnose (A), and leaves affected by algal spot (S). To develop the classification model, convolutional neural network (CNN) algorithms—ResNet-50, GoogleNet, and AlexNet—were employed. Experimental results indicate that the classification accuracy of ResNet-50, GoogleNet, and AlexNet is 93.57%, 93.95%, and 68.69%, respectively.

Objective

ทุเรียนเป็นพืชเศรษฐกิจที่มีบทบาทสำคัญต่อประเทศไทยในหลายมิติ ทั้งในด้านเศรษฐกิจ การเกษตร และการท่องเที่ยว โดยประเทศไทยเป็นหนึ่งในผู้ผลิตและส่งออกทุเรียนรายใหญ่ของโลก การรักษาคุณภาพของทุเรียนจึงเป็นปัจจัยสำคัญในการรักษาความสามารถในการแข่งขันในตลาดโลก อย่างไรก็ตาม การผลิตทุเรียนให้มีคุณภาพสูงและให้ผลผลิตที่ดีนั้น จำเป็นต้องอาศัยการดูแลรักษาต้นทุเรียนให้แข็งแรงและมีความต้านทานต่อโรคได้อย่างมีประสิทธิภาพ โรคพืชเป็นหนึ่งในปัจจัยสำคัญที่ส่งผลกระทบต่อผลผลิตของทุเรียน ซึ่งอาจเกิดจากปัจจัยแวดล้อม เช่น สภาพดิน น้ำ อากาศ รวมถึงการติดเชื้อจากเชื้อรา แบคทีเรีย และไวรัส โรคโลกที่เกิดได้ง่ายและพบเห็นได้มากที่สุดคือโรคทางใบ เนื่องจากใบมีบทบาทสำคัญต่อกระบวนการสังเคราะห์แสง ซึ่งมีผลต่อการเจริญเติบโตของต้นและคุณภาพของผลผลิต หากไม่มีการตรวจสอบและควบคุมโรคทางใบอย่างเหมาะสม อาจส่งผลให้ผลผลิตลดลง ต้นทุเรียนอ่อนแอ และเพิ่มความเสี่ยงต่อการระบาดของโรคในสวน ปัจจุบันการตรวจสอบและวินิจฉัยโรคในใบทุเรียนยังคงต้องอาศัยผู้เชี่ยวชาญด้านพืช ซึ่งอาจมีข้อจำกัดทั้งในด้านจำนวนบุคลากรและเวลาในการตรวจสอบแปลงปลูกขนาดใหญ่ การนำเทคโนโลยีภาพถ่ายและปัญญาประดิษฐ์ (Artificial Intelligence: AI) มาประยุกต์ใช้ในการจำแนกและวินิจฉัยโรคทางใบ จึงเป็นแนวทางในการช่วยเกษตรกรให้สามารถวิเคราะห์และวินิจฉัยโรคได้ด้วยตนเอง ลดความจำเป็นในการพึ่งพาผู้เชี่ยวชาญ และสามารถดำเนินการควบคุมโรคได้อย่างทันท่วงที ด้วยเหตุนี้งานวิจัยนี้จึงมุ่งเน้นไปที่การพัฒนาแบบจำลองการตรวจสอบโรคในใบทุเรียนโดยใช้เทคโนโลยีปัญญาประดิษฐ์ร่วมกับอัลกอริทึมการเรียนรู้เชิงลึก (Deep Learning) เพื่อจำแนกประเภทของโรคที่เกิดขึ้นในใบ โดยมีเป้าหมายเพื่อช่วยเพิ่มประสิทธิภาพในการตรวจสอบโรค ลดต้นทุนและเวลาในการวินิจฉัยโรค และสนับสนุนเกษตรกรให้สามารถบริหารจัดการสวนทุเรียนได้อย่างมีประสิทธิภาพและยั่งยืน

Other Innovations

Development of Carbon Nanofiber Composite Materials for Supercapacitors in Energy Storage

วิทยาลัยการจัดการนวัตกรรมและอุตสาหกรรม

Development of Carbon Nanofiber Composite Materials for Supercapacitors in Energy Storage

This study presents the development of carbon-based multiphase metal oxide nanocomposites (CNF@MOx; M = Ag, Mn, Bi, Fe) incorporating silver, manganese, bismuth, and iron nanoparticles within polyacrylonitrile (PAN)-derived carbon nanofibers. These nanocomposites were fabricated via the electrospinning technique followed by annealing in an argon atmosphere. The resulting nanofibers exhibited a uniform structure, with diameters ranging from 559 to 830 nm and embedded nanoparticles of 9-21 nm. Structural characterization confirmed the presence of various oxidation states of metal oxides, which play a crucial role in charge storage mechanisms. Electrochemical performance testing demonstrated that CNF@Ag/Mn/Bi/Fe-20 achieved the highest specific capacitance of 156 F g⁻¹ at a scan rate of 2 mV s⁻¹ and exhibited excellent cycling stability, retaining over 96% of its capacitance after 1400 charge-discharge cycles. The synergistic combination of electric double-layer capacitance and redox-based charge storage enhances the performance of these nanofibers as promising electrode materials for supercapacitor applications.

Read more
Bacteriocinogenomic analysis and anti-pathogenic activity of potential Lactococcus lactis TKP1-5 isolated from the feces of Anas platyrhynchos

คณะวิทยาศาสตร์

Bacteriocinogenomic analysis and anti-pathogenic activity of potential Lactococcus lactis TKP1-5 isolated from the feces of Anas platyrhynchos

Bacteriocins are microbial peptides that demonstrate potency against pathogens. This study evaluated the inhibitory effects on pathogens and characterized the bacteriogenomic profile of strain TKP1-5, isolated from the feces of Anas platyrhynchos domesticus. Strain TKP1-5 was characterized using phenotypic traits, 16S rRNA sequencing, and Whole-Genome Sequencing (WGS). It exhibited growth in the presence of 2-6% NaCl, temperatures of 25-45°C, and pH levels ranging from 3 to 9. Based on ANIb, ANIm, and dDDH values, strain TKP1-5 was identified as Lactococcus lactis. Whole genome analysis revealed that strain TKP1-5 harbors the Nisin Z peptide gene cluster with a bit-score of 114.775. The antimicrobial spectrum of bacteriocin TKP1-5 showed inhibitory effects against pathogenic bacteria including Pediococcus pentosaceus JCM5885, Listeria monocytogenes ATCC 19115, Enterococcus faecalis JCM 5803T, Salmonella Typhimurium ATCC 13311ᵀ, Aeromonas hydrophila B1 AhB1, Streptococcus agalactiae 1611 and Streptococcus cowan I. Genomic analysis confirmed L. lactis TKP1-5 as a non-human pathogen without antibiotic resistance genes or plasmids. Furthermore, L. lactis TKP1-5 contains potential genes associated with various probiotic properties and health benefits. This suggests that L. lactis TKP1-5, with its antibacterial activity and probiotic potential, could be a promising candidate for further research and application in the food industry.

Read more
DESIGN OF HIGH-POWER CONVERTER FOR ELECTROLYZER APPLICATION INTERFACING WITH PV SYSTEM

คณะวิศวกรรมศาสตร์

DESIGN OF HIGH-POWER CONVERTER FOR ELECTROLYZER APPLICATION INTERFACING WITH PV SYSTEM

This research focuses on the design and development of a high-power converter to regulate energy supply from solar cells (Photovoltaic: PV) to a hydrogen production unit (Electrolyzer), which is a crucial component in advancing renewable energy in alignment with the RE100 initiative. Specifically, this study targets Green Hydrogen, which is generated through the water electrolysis process using clean energy from solar cells, ensuring zero emissions and environmental sustainability. The proposed converter includes of a Three-Level NPC Inverter, transformer, Full-Bridge Rectifier, and LC filter to enhance the power quality supplied to the electrolyzer. The system's design and simulation were conducted using MATLAB and Simulink to evaluate circuit performance and analyze operational efficiency. Simulation was conducted using MATLAB and Simulink to evaluate circuit performance and analyze operational efficiency. Additionally, a microcontroller-based control system is integrated with a gate driver circuit to optimize the electrolysis process by reducing power losses. This proposed converter effectively converts PV energy into suitable voltage and current levels for the electrolyzer while maintaining high hydrogen production efficiency.

Read more