Nowadays, assembling a computer is considered something close to many people. Everyone has a chance to catch it. which knowledge of various components of computers and skills in assembling computers. These 2 things mentioned above are things that the general public should have basic knowledge and understanding about. For the self-assembly of computers, We therefore would like to provide knowledge to the general public who wants to learn how to assemble a computer, including information about its components. Through presentation in the form of learning media using VR technology, which will help reduce the problem of errors. and resources used in assembly Ready to create excitement for users by simulating computer assembly for users to interact within the virtual world. experience and provide knowledge before actually putting it into practice with real equipment This project was therefore created for those interested in assembling computers. Especially for people who have no experience in computer assembly. Including people who would like to have the opportunity to try building a computer by themselves.
ในการประกอบคอมพิวเตอร์หนึ่งเครื่องนั้นจำเป็นต้องมีอุปกรณ์จริงในการประกอบ หากไม่มีก็ไม่สามารถทำได้ อีกทั้งผู้ที่จะประกอบไม่มีความรู้อาจส่งผลให้ต้องใช้เวลานานในการประกอบ และ ในการปฏิบัติจริงในบางกรณีอาจส่งผลเสียกับอุปกรณ์กรณีที่ประกอบผิดขั้นตอน ซึ่งโครงงานนี้จะช่วยให้ผู้ใช้สามารถได้ทดลองประกอบคอมพิวเตอร์ได้ด้วยตนเอง พร้อมกับให้ความรู้เบื้องต้น โดยผ่านการนำเสนอในรูปแบบสื่อการสอนด้วยเทคโนโลยีความจริงเสมือน เพื่อให้ผู้ใช้ได้มีปฏิสัมพันธ์ และ ได้จำลองสถานการณ์ ซึ่งจะช่วยให้ผู้ใช้งานสามารถเข้าใจ และ ได้ความรู้ในการประกอบคอมพิวเตอร์มากยิ่งขึ้น ก่อนที่จะนำความรู้ที่ได้ไปปฏิบัติกับอุปกรณ์จริงได้อย่างถูกต้อง

คณะเทคโนโลยีการเกษตร
Mangosteen peel (Garcinia mangostana Linn.) extract using hot water (MPE) has been shown to have antibacterial potential in freshwater sea bass (Lates calcarifer) larvae infected with Aeromonas hydrophila. In vitro studies showed that MPE has a minimum inhibitory concentration (MIC) of 25 ppm and a minimum bactericidal concentration (MBC) of 25 ppm. In vivo, sea bass larvae were immersed in various concentrations of MPE at 0 ppm (control), 20 ppm, 40 ppm and 60 ppm, respectively, for 7 days with A. hydrophila. The results showed that the MPE-treated group had a higher survival rate compared to the control group. Hematological parameters showed that the MPE-treated group had significantly increased red blood cell (RBC), white blood cell (WBC) and hemoglobin (Hb) concentrations compared to the control group. In addition, the water quality parameters were not significantly different, except for ammonia concentration, with MPE having an ammonia concentration of 60 ppm being the lowest. All results can indicate that MPE can improve the antibacterial potential and the culture potential of sea bass larvae.

คณะอุตสาหกรรมอาหาร
This research focuses on the development of mango powder using the foam-mat drying method, which is an effective technique for preserving the quality of fruit and vegetable products. Hydroxypropyl Methylcellulose (HPMC) was used as a foaming agent. The study evaluated the effects of HPMC on the chemical and physical properties, antioxidant activity, and shelf life of mango powder. The findings indicated that HPMC plays a crucial role in improving the foam stability before drying and enhancing the quality of the dried powder. This research provides a valuable approach to adding value to substandard mango yields and reducing agricultural waste. It also contributes to the development of high-nutritional processed food products with extended shelf life.

คณะเทคโนโลยีการเกษตร
Durian is a crucial economic crop of Thailand and one of the most exported agricultural products in the world. However, producing high-quality durian requires maintaining the health of durian trees, ensuring they remain strong and disease-free to optimize productivity and minimize potential damage to both the tree and its fruit. Among the various diseases affecting durian, foliar diseases are among the most common and rapidly spreading, directly impacting tree growth and fruit quality. Therefore, monitoring and controlling leaf diseases is essential for preserving durian quality. This study aims to apply image analysis technology combined with artificial intelligence (AI) to classify diseases in durian leaves, enabling farmers to diagnose diseases independently without relying on experts. The classification includes three categories: healthy leaves (H), leaves infected with anthracnose (A), and leaves affected by algal spot (S). To develop the classification model, convolutional neural network (CNN) algorithms—ResNet-50, GoogleNet, and AlexNet—were employed. Experimental results indicate that the classification accuracy of ResNet-50, GoogleNet, and AlexNet is 93.57%, 93.95%, and 68.69%, respectively.