Nowadays, assembling a computer is considered something close to many people. Everyone has a chance to catch it. which knowledge of various components of computers and skills in assembling computers. These 2 things mentioned above are things that the general public should have basic knowledge and understanding about. For the self-assembly of computers, We therefore would like to provide knowledge to the general public who wants to learn how to assemble a computer, including information about its components. Through presentation in the form of learning media using VR technology, which will help reduce the problem of errors. and resources used in assembly Ready to create excitement for users by simulating computer assembly for users to interact within the virtual world. experience and provide knowledge before actually putting it into practice with real equipment This project was therefore created for those interested in assembling computers. Especially for people who have no experience in computer assembly. Including people who would like to have the opportunity to try building a computer by themselves.
ในการประกอบคอมพิวเตอร์หนึ่งเครื่องนั้นจำเป็นต้องมีอุปกรณ์จริงในการประกอบ หากไม่มีก็ไม่สามารถทำได้ อีกทั้งผู้ที่จะประกอบไม่มีความรู้อาจส่งผลให้ต้องใช้เวลานานในการประกอบ และ ในการปฏิบัติจริงในบางกรณีอาจส่งผลเสียกับอุปกรณ์กรณีที่ประกอบผิดขั้นตอน ซึ่งโครงงานนี้จะช่วยให้ผู้ใช้สามารถได้ทดลองประกอบคอมพิวเตอร์ได้ด้วยตนเอง พร้อมกับให้ความรู้เบื้องต้น โดยผ่านการนำเสนอในรูปแบบสื่อการสอนด้วยเทคโนโลยีความจริงเสมือน เพื่อให้ผู้ใช้ได้มีปฏิสัมพันธ์ และ ได้จำลองสถานการณ์ ซึ่งจะช่วยให้ผู้ใช้งานสามารถเข้าใจ และ ได้ความรู้ในการประกอบคอมพิวเตอร์มากยิ่งขึ้น ก่อนที่จะนำความรู้ที่ได้ไปปฏิบัติกับอุปกรณ์จริงได้อย่างถูกต้อง

คณะวิทยาศาสตร์
With the urgent need for rapid screening of Aflatoxin B1 (AFB1) due to its association with increased liver cirrhosis and hepatocellular carcinoma cases from contaminated agricultural foods, we propose a novel electrochemical aptasensor. This aptasensor is based on trimetallic nanoparticles AuPt-Ru supported by reduced graphene oxide (AuPt-Ru/RGO) modified on a low-cost and disposable goldleaf electrode (GLEAuPt-Ru/RGO) for detection of AFB1. The trimetallic nanoparticle AuPt-Ru was synthesized using an ultrasonic-driven chemical reduction method. The synthesized AuPt-Ru exhibited a waxberry-like appearance, with AuPt core-shell structure and ruthenium dispersed over the particles. The average particle size was 57.35 ± 8.24 nm. The AuPt-Ru was integrated into RGO sheets (inner diameter of 0.5 to 1.6 µm) in order to enhance electron transfer efficiency and increase the specific immobilizing surface area of the thiol-5’-terminated modified aptamer (Apt) to target AFB1. With a large electrochemical surface area and low electrochemical impedance, GLEAuPt-Ru/RGO displays ultra-high sensitivity for AFB1 detection. Differential pulse voltammetry (DPV) measurements revealed a linear range for AFB1 detection range from 0.3 to 30.0 pg mL-1 (R2 = 0.9972), with a limit of detection (LOD, S/N = 3) and a limit of quantification (LOQ, S/N = 10) of 0.009 pg mL-1 and 0.031 pg mL-1, respectively. The developed aptasensor also demonstrated excellent accuracy in real agricultural products, including dried red chili, garlic, peanut, pepper, and Thai jasmine rice, achieving recovery rates between 94.6 and 107.9%. The fabricated aptamer-based GLEAuPt-Ru/RGO performance is comparable to that of a modified commercial electrode, which has great potential application prospects for detecting AFB1 in agricultural products.

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
This piece represents the collection of all human elements, applied to design for maximum efficiency, following the principles of Modern designers who embraced the famous phrase "Form follows Function." Every line and structure of the design is carefully considered for user comfort and practical use, while reflecting the idea that the user's experience is central to the design process. The beauty emerges from the harmony between function and form, not only meeting functional needs but also enhancing the aesthetic of Modernist design in a complete and meaningful way.

คณะวิทยาศาสตร์
Currently, climate change and human activities are causing rapid deterioration of coral reefs worldwide. Monitoring coral health is essential for marine ecosystem conservation. This project focuses on developing an Artificial Intelligence (AI) model to classify coral health into four categories: Healthy, Bleached, Pale, and Dead using Deep Learning techniques. With pre-trained convolutional neural network (CNN) for image classification. To improve accuracy and mitigate overfitting, 5-fold Cross-Validation is employed during training, and the best-performing model is saved. The results of this project can be applied to monitor coral reef conditions and assist marine scientists in analyzing coral health more efficiently and accurately. This contributes to better conservation planning for marine ecosystems in the future.