
This project aims to design and develop a propulsion system for agricultural equipment using RFID technology and evaluate its movement performance on different surfaces, including concrete and grass. The experiment focuses on examining the tag detection range under transmission power levels of 20 dBm, 23 dBm, and 26 dBm, as well as the impact of antenna angles on detection efficiency. Additionally, the system was tested in three movement scenarios: straight path, left turn, and right turn, at distances of 2 meters, 4 meters, and 6 meters. The results indicate that the system achieved the highest average speed of 0.4736 m/s and an average turning angle of 91.6° when moving in a straight path on a concrete surface at a distance of 4 meters. On a grass surface at the same distance, the average speed was 0.4483 m/s, with an average turning angle of 91.1°. For left and right turns, the movement on the concrete surface generally exhibited a higher average speed than on grass, particularly at a distance of 4 meters, where differences in turning angles were observed. This study provides insights into the factors affecting the movement of agricultural mowing equipment and serves as a foundation for enhancing the efficiency of propulsion systems in future developments.
ปัจจุบัน เทคโนโลยี RFID (Radio Frequency Identification) ได้รับการใช้งานอย่างแพร่หลายในหลากหลายอุตสาหกรรมและแอปพลิเคชันที่เติบโตอย่างรวดเร็ว เทคโนโลยีนี้ใช้คลื่นวิทยุในการระบุวัตถุที่ติดแท็กโดยไม่จำเป็นต้องมองเห็นหรือสัมผัสโดยตรง ทำให้การติดตามและระบุตำแหน่งมีความแม่นยำ คุ้มค่าทางเศรษฐกิจ และสามารถทำงานได้อย่างมีประสิทธิภาพในสภาพแวดล้อมที่หลากหลาย เช่น ภาคอุตสาหกรรมและการเกษตร ในภาคการเกษตร การใช้ RFID มีข้อดีหลายประการ เช่น ความสามารถในการทำงานกลางแจ้งโดยไม่ต้องพึ่งพาเซ็นเซอร์ราคาแพงหรือระบบสะท้อนสัญญาณที่ซับซ้อน ซึ่งช่วยลดต้นทุนและเพิ่มความแม่นยำในการควบคุมอุปกรณ์ทางการเกษตร งานวิจัยนี้มุ่งเน้น การออกแบบและพัฒนาระบบขับเคลื่อนต่อพ่วงอุปกรณ์ทางการเกษตรโดยใช้เทคโนโลยี RFID เพื่อศึกษาการเคลื่อนที่ของระบบบนพื้นผิวที่แตกต่างกัน ได้แก่ พื้นปูนคอนกรีตและสนามหญ้า โดยมีการติดตั้งแท็ก RFID บนเสาของแต่ละแถวเพื่อช่วยระบุตำแหน่งและทิศทางการเคลื่อนที่ของระบบ ผลการศึกษานี้จะช่วยให้เข้าใจข้อดีและข้อจำกัดของการใช้ RFID ในภาคการเกษตร ซึ่งสามารถนำไปต่อยอดเพื่อพัฒนาเทคโนโลยีการเกษตรให้มีประสิทธิภาพและลดต้นทุนในอนาคต

คณะอุตสาหกรรมอาหาร
The researcher aims to develop bagasse mixed with molasses as a smoking material for meat, enhancing its unique aroma and flavor. This innovation caters to the food industry and consumer demand while adding value to sugar mill byproducts, reducing waste, and promoting efficient resource utilization.

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
---

วิทยาลัยอุตสาหกรรมการบินนานาชาติ
The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.