KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Agricultural equipment propulsion system using RFID technology

Agricultural equipment propulsion system using RFID technology

Abstract

This project aims to design and develop a propulsion system for agricultural equipment using RFID technology and evaluate its movement performance on different surfaces, including concrete and grass. The experiment focuses on examining the tag detection range under transmission power levels of 20 dBm, 23 dBm, and 26 dBm, as well as the impact of antenna angles on detection efficiency. Additionally, the system was tested in three movement scenarios: straight path, left turn, and right turn, at distances of 2 meters, 4 meters, and 6 meters. The results indicate that the system achieved the highest average speed of 0.4736 m/s and an average turning angle of 91.6° when moving in a straight path on a concrete surface at a distance of 4 meters. On a grass surface at the same distance, the average speed was 0.4483 m/s, with an average turning angle of 91.1°. For left and right turns, the movement on the concrete surface generally exhibited a higher average speed than on grass, particularly at a distance of 4 meters, where differences in turning angles were observed. This study provides insights into the factors affecting the movement of agricultural mowing equipment and serves as a foundation for enhancing the efficiency of propulsion systems in future developments.

Objective

ปัจจุบัน เทคโนโลยี RFID (Radio Frequency Identification) ได้รับการใช้งานอย่างแพร่หลายในหลากหลายอุตสาหกรรมและแอปพลิเคชันที่เติบโตอย่างรวดเร็ว เทคโนโลยีนี้ใช้คลื่นวิทยุในการระบุวัตถุที่ติดแท็กโดยไม่จำเป็นต้องมองเห็นหรือสัมผัสโดยตรง ทำให้การติดตามและระบุตำแหน่งมีความแม่นยำ คุ้มค่าทางเศรษฐกิจ และสามารถทำงานได้อย่างมีประสิทธิภาพในสภาพแวดล้อมที่หลากหลาย เช่น ภาคอุตสาหกรรมและการเกษตร ในภาคการเกษตร การใช้ RFID มีข้อดีหลายประการ เช่น ความสามารถในการทำงานกลางแจ้งโดยไม่ต้องพึ่งพาเซ็นเซอร์ราคาแพงหรือระบบสะท้อนสัญญาณที่ซับซ้อน ซึ่งช่วยลดต้นทุนและเพิ่มความแม่นยำในการควบคุมอุปกรณ์ทางการเกษตร งานวิจัยนี้มุ่งเน้น การออกแบบและพัฒนาระบบขับเคลื่อนต่อพ่วงอุปกรณ์ทางการเกษตรโดยใช้เทคโนโลยี RFID เพื่อศึกษาการเคลื่อนที่ของระบบบนพื้นผิวที่แตกต่างกัน ได้แก่ พื้นปูนคอนกรีตและสนามหญ้า โดยมีการติดตั้งแท็ก RFID บนเสาของแต่ละแถวเพื่อช่วยระบุตำแหน่งและทิศทางการเคลื่อนที่ของระบบ ผลการศึกษานี้จะช่วยให้เข้าใจข้อดีและข้อจำกัดของการใช้ RFID ในภาคการเกษตร ซึ่งสามารถนำไปต่อยอดเพื่อพัฒนาเทคโนโลยีการเกษตรให้มีประสิทธิภาพและลดต้นทุนในอนาคต

Other Innovations

A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

คณะวิทยาศาสตร์

A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

This special problem aims to compare the performance of machine learning methods in time series forecasting using lagged time periods as independent variables. The lagged periods are categorized into three groups: lagged by 10 units, lagged by 15 units, and lagged by 20 units. The study employs four machine learning methods: Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The time series data simulated as independent variables diverse including characteristics: Random Walk data, Trending data, and Non-Linear data, with sample sizes of 100, 300, 500, and 700. The research methodology involves splitting the data into 90% for training and 10% for testing. Simulations and analysis are performed using the R programming language, with 1,000 iterations conducted. The results are evaluated based on the average mean squared error (AMSE) and the average mean absolute percentage error (AMAPE) are calculated to identify the best performing method. The research findings revealed that for Random Walk data, the best performing methods are Random Forest and Support Vector Machine. For Trend data, the best performing methods are Random Forest. For Non-Linear data, the best performing methods are Support Vector Machine. When tested with real-world data, the results show that for the Euro-to-Thai Baht exchange rate, the best methods are Random Forest and Support Vector Machine. For the S&P 500 Index in USD, the best performing methods are Random Forest. For the Bank of America Corp Index in USD, the best performing methods are Support Vector Machine.

Read more
"Green and Smart City Innovation"+“APOLE” Cultural Product Design

คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี

"Green and Smart City Innovation"+“APOLE” Cultural Product Design

"Green and Smart City Innovation" is a concrete integration of social innovation and innovation for smart city in Chiang Rai Province with an interdisciplinary collabarative learning approach based on the research and development of learning in the area by the community. Project Title : “APOLE” Cultural Product Design: The Cultural Product Design Beyond. “City development that aims to improve the quality of life By increasing the efficiency of service city ​​management cost reduction and use of resources Emphasis is placed on the participation mechanisms of the public sector, private sector, public sector, and academic sector. Under the concept of developing a livable, modern, sustainable city that provides citizens in the city with a good quality of life. by leveraging technology and innovation as tools” to move towards a Smart City in the future The government sector uses technology as a driving force. Emphasis is placed on creating an infrastructure system. (Infrastructure) to be consistent with the living conditions of local people. By laying down telecommunications infrastructure, smart poles, arranging electrical wires and grounding communication cables. Installation of intelligent CCTV systems, air quality improvement, Internet of Things (IoT) devices, and Internet of Things (IoT) technology control systems, which help improve people's quality of life so that they can live with more quality.

Read more
The development of precision automation system for Siamese fighting fish (Betta splendens)

คณะเทคโนโลยีการเกษตร

The development of precision automation system for Siamese fighting fish (Betta splendens)

Siamese fighting fish (Betta splendens) is an ornamental fish that is the first exported economically valuable fish in the country, but there is a limitation to increase the production of betta fish due to climate variability and the shortage of Thai workers. This research aims to develop 2 systems: a betta fish fry nursery system and a market-sized betta fish rearing system by using automated technology to precisely control the water quality in the system and reduce labor costs. Using precise automation consists of two systems: a minimal-waste system, which repurposes some of the waste generated from farming, and a zero-waste system, which treats and recycles all wastewater from farming. These systems aim to address issues related to water quality, animal welfare, and labor requirements in Betta fish farming. Experimental results show that these systems improve Betta fish survival rates by 10-15% compared to traditional methods. When considering net returns, the zero- waste system provides the highest profitability.

Read more