KMITL Innovation Expo 2025 Logo

Information Technology and AI

EQUIPMENT FOR ASSISTING INDIVIDUALS WITH VISUALLY  IMPAIRED IN DAILY LIFE INSIDE BUILDING

คณะวิศวกรรมศาสตร์

EQUIPMENT FOR ASSISTING INDIVIDUALS WITH VISUALLY IMPAIRED IN DAILY LIFE INSIDE BUILDING

This thesis presents the application of deep learning for object classification. The selected deep learning architectures studied include Convolutional Neural Networks (CNN) and ResNet18. It covers data preparation, feature extraction, parameter tuning for accuracy comparison, and performance evaluation of the selected models. The aim is to propose an efficient model for use in devices that assist visually impaired individuals in classifying indoor objects and providing sound alerts.

Read more
Automatic gemstone color sorting machine

วิทยาลัยนวัตกรรมการผลิตขั้นสูง

Automatic gemstone color sorting machine

This research aims to develop an automatic gemstone color sorting machine to overcome the limitations of manual color sorting, which can be restricted by speed and accuracy. This study applies deep learning technology to analyze and classify gemstone colors precisely, developing an algorithm capable of accurately detecting and categorizing color shades. An automated conveyor system was also designed to efficiently transport gemstones through the color sorting process, allowing for continuous operation. The sorting machine works by capturing high-resolution images of the gemstones, processing them with software to classify color shades, and directing each gemstone to its designated position on the automated conveyor. Experimental results demonstrate that the automated color sorting machine, integrated with the conveyor system, achieves high speed and accuracy, significantly reducing labor costs and enhancing the efficiency of gemstone color sorting.

Read more
3D Soundscape Healing: The L-R Beat Exploration in Binaural Beats Therapy

วิทยาลัยวิศวกรรมสังคีต

3D Soundscape Healing: The L-R Beat Exploration in Binaural Beats Therapy

This project explores the therapeutic potential of binaural beats within a 3D soundscape environment, focusing on the effects of left-right (L-R) beating sound positioning. Using Dolby Atmos technology to create immersive auditory experiences, the research aims to investigate how varying spatial beating sound placements in binaural beat therapy influence mental and emotional healing. Binaural beats, a form of auditory brainwave entrainment, have been shown to promote relaxation, reduce anxiety, and enhance cognitive performance. However, there has been limited exploration of how spatial sound technologies, like Dolby Atmos, can enhance the efficacy of these therapies. This study examines how different beating L-R configurations in a 3D soundscape impact the listener’s perception and therapeutic outcomes. Participants will experience binaural beat sessions in various beating L-R orientations, and physiological and psychological measures, such as heart rate variability and self-reported relaxation levels, will be assessed. The results are expected to provide new insights into the interaction between spatial audio environments and sound-based therapies, potentially improving sound therapy practices by leveraging advanced audio technologies.

Read more
Cracking the PM2.5 Code

คณะวิทยาศาสตร์

Cracking the PM2.5 Code

Air pollution, particularly PM2.5, is a major environmental and public health concern in Bangkok. Instead of predicting PM2.5 levels, this project aims to identify the most significant factors influencing PM2.5 concentration. By analyzing historical air quality, weather, and other environmental data, we will determine which variables—such as temperature, humidity, wind speed, or other pollutants—have the greatest impact on PM2.5 fluctuations.

Read more
SignGen: An LLM-Based Thai Sign Language Generator

คณะวิศวกรรมศาสตร์

SignGen: An LLM-Based Thai Sign Language Generator

The Thai Sign Language Generation System aims to create a comprehensive 3D modeling and animation platform that translates Thai sentences into dynamic and accurate representations of Thai Sign Language (TSL) gestures. This project enhances communication for the Thai deaf community by leveraging a landmark-based approach using a Vector Quantized Variational Autoencoder (VQVAE) and a Large Language Model (LLM) for sign language generation. The system first trains a VQVAE encoder using landmark data extracted from sign videos, allowing it to learn compact latent representations of TSL gestures. These encoded representations are then used to generate additional landmark-based sign sequences, effectively expanding the training dataset using the BigSign ThaiPBS dataset. Once the dataset is augmented, an LLM is trained to output accurate landmark sequences from Thai text inputs, which are then used to animate a 3D model in Blender, ensuring fluid and natural TSL gestures. The project is implemented using Python, incorporating MediaPipe for landmark extraction, OpenCV for real-time image processing, and Blender’s Python API for 3D animation. By integrating AI, VQVAE-based encoding, and LLM-driven landmark generation, this system aspires to bridge the communication gap between written Thai text and expressive TSL gestures, providing the Thai deaf community with an interactive, real-time sign language animation platform.

Read more
BottleBank - Automatic Waste Collection Bin for Plastic and Cans

คณะวิทยาศาสตร์

BottleBank - Automatic Waste Collection Bin for Plastic and Cans

This project presents the development of an automatic recycling machine for plastic bottles and cans, utilizing Machine Learning for packaging classification through image processing, integrated with smart sensor systems for quality inspection and operation control. The system connects to a Web Application for real-time monitoring and control. Once the packaging type is verified, the system automatically calculates the refund value and processes payment through e-wallet or issues cash vouchers. The system can be installed in public spaces to promote waste segregation at source, reduce contamination, and increase recycling efficiency. It also provides financial incentives to encourage public participation in waste management. This project demonstrates the potential of combining Machine Learning and smart sensor systems in developing accurate, convenient, and sustainable waste management solutions.

Read more
The Development of Hand Gesture Recognition for Controlling Electronic Devices

คณะวิทยาศาสตร์

The Development of Hand Gesture Recognition for Controlling Electronic Devices

This research will begin with a review of literature and related studies to examine existing technologies and methods for hand gesture recognition and their applications in controlling electronic devices such as drones, robots, and gaming systems. Subsequently, a hand gesture recognition system will be designed and developed using machine learning and computer vision techniques, with a focus on creating an algorithm that operates quickly and accurately, making it suitable for real-time control. The developed system will be tested and refined using various simulated scenarios to evaluate its efficiency and accuracy in diverse environments. Additionally, a user-friendly interface will be developed to ensure accessibility for all user groups. The research will also incorporate qualitative studies to gather feedback from both novice users and experts, which will contribute to further system improvements, ensuring it effectively meets user needs. Ultimately, the findings of this research will lead to the development of a functional prototype for gesture-based control, which can be applied in industries and entertainment. This will contribute to advancements in innovation and new technologies in the future.

Read more
Coral In focus

คณะวิทยาศาสตร์

Coral In focus

Currently, climate change and human activities are causing rapid deterioration of coral reefs worldwide. Monitoring coral health is essential for marine ecosystem conservation. This project focuses on developing an Artificial Intelligence (AI) model to classify coral health into four categories: Healthy, Bleached, Pale, and Dead using Deep Learning techniques. With pre-trained convolutional neural network (CNN) for image classification. To improve accuracy and mitigate overfitting, 5-fold Cross-Validation is employed during training, and the best-performing model is saved. The results of this project can be applied to monitor coral reef conditions and assist marine scientists in analyzing coral health more efficiently and accurately. This contributes to better conservation planning for marine ecosystems in the future.

Read more
Aspect-Based Sentiment Analysis for E-Commerce Product Reviews

คณะวิทยาศาสตร์

Aspect-Based Sentiment Analysis for E-Commerce Product Reviews

In today’s rapidly expanding e-commerce environment, the massive volume of product reviews makes it crucial to summarize user opinions in a way that is both comprehensible and practically applicable. This research presents a system for analyzing product reviews using Aspect-Based Sentiment Analysis (ABSA), a Natural Language Processing (NLP) technique that identifies key aspects of a review (such as shipping, product quality, and packaging) and evaluates the sentiment (positive, negative, or neutral) associated with each aspect, allowing both consumers and merchants to gain more efficient access to in-depth insights. This project focuses on developing AI for Thai-language ABSA by utilizing WangchanBERTa, a model trained on Thai data, and comparing it with various standard approaches such as TF-IDF + Logistic Regression, Word2Vec + BiLSTM, and Multilingual BERT (mBERT/XLM-R) to assess their performance in terms of accuracy, speed, and resource usage. Additionally, a dashboard visualization is provided to help users quickly grasp review trends. The expected outcome is to create an AI tool that can be practically employed in the e-commerce industry, enabling consumers to make easier purchasing decisions and assisting merchants in effectively improving their products and services.

Read more