This research will begin with a review of literature and related studies to examine existing technologies and methods for hand gesture recognition and their applications in controlling electronic devices such as drones, robots, and gaming systems. Subsequently, a hand gesture recognition system will be designed and developed using machine learning and computer vision techniques, with a focus on creating an algorithm that operates quickly and accurately, making it suitable for real-time control. The developed system will be tested and refined using various simulated scenarios to evaluate its efficiency and accuracy in diverse environments. Additionally, a user-friendly interface will be developed to ensure accessibility for all user groups. The research will also incorporate qualitative studies to gather feedback from both novice users and experts, which will contribute to further system improvements, ensuring it effectively meets user needs. Ultimately, the findings of this research will lead to the development of a functional prototype for gesture-based control, which can be applied in industries and entertainment. This will contribute to advancements in innovation and new technologies in the future.
ในยุคปัจจุบัน เทคโนโลยีโดรน หุ่นยนต์ และเกมดิจิทัลได้เข้ามามีบทบาทสำคัญในชีวิตประจำวันและอุตสาหกรรมต่าง ๆ มากขึ้นอย่างต่อเนื่อง การควบคุมอุปกรณ์เหล่านี้ส่วนใหญ่ยังคงพึ่งพารีโมทคอนโทรล จอยสติก หรืออุปกรณ์ควบคุมเฉพาะทาง ซึ่งอาจมีข้อจำกัดในด้านความยืดหยุ่น ความเป็นธรรมชาติในการใช้งาน และการเข้าถึงสำหรับผู้ใช้บางกลุ่ม เช่น ผู้พิการ หรือผู้สูงอายุ นอกจากนี้ ในสถานการณ์ที่ต้องการความคล่องตัวสูง เช่น การควบคุมโดรนในพื้นที่จำกัด หรือการเล่นเกมที่ต้องการการตอบสนองที่รวดเร็ว การใช้อุปกรณ์ควบคุมแบบดั้งเดิมอาจเป็นข้อจำกัดในการเพิ่มประสิทธิภาพการทำงานหรือประสบการณ์การเล่นเกม การพัฒนาเทคโนโลยีการรู้จำท่าทางมือ (Hand Gesture Recognition) จึงเป็นแนวทางที่มีศักยภาพอย่างสูงในการแก้ไขปัญหาดังกล่าว โดยเทคโนโลยีนี้สามารถช่วยให้ผู้ใช้ควบคุมโดรน หุ่นยนต์ หรือเล่นเกม ฯลฯ เป็นต้น ได้อย่างเป็นธรรมชาติมากขึ้น เพียงแค่ใช้ท่าทางมือที่กำหนดไว้ ซึ่งนอกจากจะเพิ่มความสะดวกสบายและความคล่องตัวในการควบคุมแล้ว ยังช่วยเพิ่มความสามารถในการเข้าถึงเทคโนโลยีสำหรับผู้ใช้ที่มีข้อจำกัดทางร่างกาย อีกทั้งยังเปิดโอกาสให้มีการพัฒนารูปแบบการควบคุมและการเล่นเกมแบบใหม่ ๆ ที่ไม่เคยมีมาก่อน
คณะเทคโนโลยีสารสนเทศ
This research presents a deep learning method for generating automatic captions from the segmentation of car part damage. It analyzes car images using a Unified Framework to accurately and quickly identify and describe the damage. The development is based on the research "GRiT: A Generative Region-to-text Transformer for Object Understanding," which has been adapted for car image analysis. The improvement aims to make the model generate precise descriptions for different areas of the car, from damaged parts to identifying various components. The researchers focuses on developing deep learning techniques for automatic caption generation and damage segmentation in car damage analysis. The aim is to enable precise identification and description of damages on vehicles, there by increasing speed and reducing the work load of experts in damage assessment. Traditionally, damage assessment relies solely on expert evaluations, which are costly and time-consuming. To address this issue, we propose utilizing data generation for training, automatic caption creation, and damage segmentation using an integrated framework. The researchers created a new dataset from CarDD, which is specifically designed for cardamage detection. This dataset includes labeled damages on vehicles, and the researchers have used it to feed into models for segmenting car parts and accurately labeling each part and damage category. Preliminary results from the model demonstrate its capability in automatic caption generation and damage segmentation for car damage analysis to be satisfactory. With these results, the model serves as an essential foundation for future development. This advancement aims not only to enhance performance in damage segmentation and caption generation but also to improve the model’s adaptability to a diversity of damages occurring on various surfaces and parts of vehicles. This will allow the system to be applied more broadly to different vehicle types and conditions of damage inthe future
คณะเทคโนโลยีการเกษตร
Currently, urban agriculture is gaining increasing attention as it helps enhance food security and expand green spaces in cities. However, some people remain uninterested in urban farming, possibly due to living in urban areas or having limited space, making them perceive agriculture as something distant from their daily lives. The development of an urban agriculture card game aims to promote learning about urban farming through an engaging and enjoyable gameplay experience.
คณะวิศวกรรมศาสตร์
ยานยนต์ไฟฟ้าดัดแปลง