KMITL Innovation Expo 2025 Logo

Cracking the PM2.5 Code

Abstract

Air pollution, particularly PM2.5, is a major environmental and public health concern in Bangkok. Instead of predicting PM2.5 levels, this project aims to identify the most significant factors influencing PM2.5 concentration. By analyzing historical air quality, weather, and other environmental data, we will determine which variables—such as temperature, humidity, wind speed, or other pollutants—have the greatest impact on PM2.5 fluctuations.

Objective

PM2.5 pollution is a serious issue in Bangkok, causing respiratory diseases, heart conditions, and reduced air quality. Identifying the most critical factors contributing to PM2.5 can help in creating solutions to improve public health.

Other Innovations

Synergistic antibacterial activity of human salivary peptide Histatin-5 and Phytosphingosine against Streptococcus mutans biofilm

คณะทันตแพทยศาสตร์

Synergistic antibacterial activity of human salivary peptide Histatin-5 and Phytosphingosine against Streptococcus mutans biofilm

Objective or Background: Dental caries is still one of the most significant dental problems worldwide, with prevalence rates up to 90% among children and adults. Cariogenic bacteria, especially Streptococcus mutans, is the primary microorganism involved in the pathogenesis through carbohydrate metabolism and biofilm formation, which are challenging to eradicate. Histatin-5 (HST-5), a human salivary antimicrobial peptide, has demonstrated antimicrobial activity against various fungal and bacterial pathogens. Phytosphingosine (PHS), an endogenous bioactive sphingolipid found in fungi, plants, and humans, also shows antimicrobial properties. This study aimed to evaluate the killing activity of HST-5 alone and in combination with PHS against S. mutans under biofilm-stimulating conditions. Materials and Methods: Antimicrobial activity against a planktonic culture of S. mutans was evaluated using a time-kill assay, and biofilm-forming capacity was confirmed by crystal violet staining assay. The killing ability against 24h pre-formed biofilm was determined using Transferable Solid Phase (TSP) pin lid model. Synergistic activity between HST-5 and PHS was evaluated using the checkerboard technique. Additionally, the cytotoxicity of the tested agent on human gingival fibroblast cells (hGFs) was assessed after 1 h of incubation using an MTT assay. Results: A time-kill assay revealed that both HST-5 and PHS exhibit time- and concentration-dependent activity against the planktonic form of S. mutans. PHS achieved over 90% killing activity within 15 min at 5 μg/ml, whereas HST-5 required 30 min to reach 90% killing at 20 μM. The biofilm formation capacity of S. mutans was confirmed. The inhibitory concentrations (IC50) of HST-5 and PHS against S. mutans biofilm were 25 μM and 13.5 μg/ml, respectively. A synergistic interaction between HST-5 and PHS, with IC50 values reduced by 8-fold and 16-fold, respectively. No cytotoxic effects were observed in hGFs cells at the concentration of the synergistic interaction. Conclusions: Therefore, the combination of HST-5 and PHS may enhance the effectiveness of anti-infective agents against S. mutans biofilm, potentially preventing the development of dental caries.

Read more
Automatic gemstone color sorting machine

วิทยาลัยนวัตกรรมการผลิตขั้นสูง

Automatic gemstone color sorting machine

This research aims to develop an automatic gemstone color sorting machine to overcome the limitations of manual color sorting, which can be restricted by speed and accuracy. This study applies deep learning technology to analyze and classify gemstone colors precisely, developing an algorithm capable of accurately detecting and categorizing color shades. An automated conveyor system was also designed to efficiently transport gemstones through the color sorting process, allowing for continuous operation. The sorting machine works by capturing high-resolution images of the gemstones, processing them with software to classify color shades, and directing each gemstone to its designated position on the automated conveyor. Experimental results demonstrate that the automated color sorting machine, integrated with the conveyor system, achieves high speed and accuracy, significantly reducing labor costs and enhancing the efficiency of gemstone color sorting.

Read more
A Metaverse System of Chalermphrakiat Innovation Building at King Mongkut's Memorial Park, KMITL

คณะเทคโนโลยีสารสนเทศ

A Metaverse System of Chalermphrakiat Innovation Building at King Mongkut's Memorial Park, KMITL

Traditional methods of public relations and learning often lack engagement and fail to provide users with a deep and immersive experience. Additionally, these methods struggle to reach a wide audience, especially those unable to visit the physical location. This project aims to solve the issues of accessibility and awareness regarding the institution’s Chalermphrakiat Hall and historical exhibition. Utilizing metaverse technology to simulate important locations allows users to explore the site and view key information in a virtual format, thereby enhancing the engagement of students staff alumni and the general public. The metaverse system is developed using Unity, a powerful game engine capable of supporting the creation of metaverse environments. This allows for the creation of an interactive and realistic virtual space. Unity also supports the management of physics, lighting, and sound, further enhancing realism. Additionally, the system is integrated with web browsers using WebGL technology, enabling the project developed in Unity to be accessed directly through a browser. Users can visit and interact with the metaverse environment from anywhere without the need to install additional software. The developers have thus created the metaverse system to provide a realistic and engaging learning experience, enhancing public relations efforts and fostering a strong connection with the institution efficiently.

Read more