Air pollution, particularly PM2.5, is a major environmental and public health concern in Bangkok. Instead of predicting PM2.5 levels, this project aims to identify the most significant factors influencing PM2.5 concentration. By analyzing historical air quality, weather, and other environmental data, we will determine which variables—such as temperature, humidity, wind speed, or other pollutants—have the greatest impact on PM2.5 fluctuations.
PM2.5 pollution is a serious issue in Bangkok, causing respiratory diseases, heart conditions, and reduced air quality. Identifying the most critical factors contributing to PM2.5 can help in creating solutions to improve public health.

คณะเทคโนโลยีสารสนเทศ
KinderForest : Puzzle Building Game with VR Technology is designed to utilize Virtual Reality (VR) technology with the primary aim of promoting creative problem-solving skills and basic practical application abilities among players. This project presents the game in an Augmented Virtual Reality (AR VR) format, emphasizing physical engagement of players during gameplay while fostering creativity and fundamental application skills. The project team has chosen to utilize Unreal Engine 5.1 and Oculus Quest 2 virtual reality glasses to develop the game in the form of augmented virtual reality technology. Within the game, there will be various levels that require creative thinking and different approaches to pass. Time constraints will be a crucial element in completing missions and progressing through these levels. Players will physically move their bodies in response to in-game movements. Each level will present unique challenges that will necessitate both physical movement and problem-solving skills. The game will provide different rewards based on the outcomes of mission completion, and players will be informed of their results once they have successfully passed a level.

คณะเทคโนโลยีการเกษตร
Siamese fighting fish (Betta splendens) is an ornamental fish that is the first exported economically valuable fish in the country, but there is a limitation to increase the production of betta fish due to climate variability and the shortage of Thai workers. This research aims to develop 2 systems: a betta fish fry nursery system and a market-sized betta fish rearing system by using automated technology to precisely control the water quality in the system and reduce labor costs. Using precise automation consists of two systems: a minimal-waste system, which repurposes some of the waste generated from farming, and a zero-waste system, which treats and recycles all wastewater from farming. These systems aim to address issues related to water quality, animal welfare, and labor requirements in Betta fish farming. Experimental results show that these systems improve Betta fish survival rates by 10-15% compared to traditional methods. When considering net returns, the zero- waste system provides the highest profitability.

วิทยาลัยการจัดการนวัตกรรมและอุตสาหกรรม
This study presents the development of carbon-based multiphase metal oxide nanocomposites (CNF@MOx; M = Ag, Mn, Bi, Fe) incorporating silver, manganese, bismuth, and iron nanoparticles within polyacrylonitrile (PAN)-derived carbon nanofibers. These nanocomposites were fabricated via the electrospinning technique followed by annealing in an argon atmosphere. The resulting nanofibers exhibited a uniform structure, with diameters ranging from 559 to 830 nm and embedded nanoparticles of 9-21 nm. Structural characterization confirmed the presence of various oxidation states of metal oxides, which play a crucial role in charge storage mechanisms. Electrochemical performance testing demonstrated that CNF@Ag/Mn/Bi/Fe-20 achieved the highest specific capacitance of 156 F g⁻¹ at a scan rate of 2 mV s⁻¹ and exhibited excellent cycling stability, retaining over 96% of its capacitance after 1400 charge-discharge cycles. The synergistic combination of electric double-layer capacitance and redox-based charge storage enhances the performance of these nanofibers as promising electrode materials for supercapacitor applications.