Air pollution, particularly PM2.5, is a major environmental and public health concern in Bangkok. Instead of predicting PM2.5 levels, this project aims to identify the most significant factors influencing PM2.5 concentration. By analyzing historical air quality, weather, and other environmental data, we will determine which variables—such as temperature, humidity, wind speed, or other pollutants—have the greatest impact on PM2.5 fluctuations.
PM2.5 pollution is a serious issue in Bangkok, causing respiratory diseases, heart conditions, and reduced air quality. Identifying the most critical factors contributing to PM2.5 can help in creating solutions to improve public health.
วิทยาลัยนวัตกรรมการผลิตขั้นสูง
This research aims to develop an automatic gemstone color sorting machine to overcome the limitations of manual color sorting, which can be restricted by speed and accuracy. This study applies deep learning technology to analyze and classify gemstone colors precisely, developing an algorithm capable of accurately detecting and categorizing color shades. An automated conveyor system was also designed to efficiently transport gemstones through the color sorting process, allowing for continuous operation. The sorting machine works by capturing high-resolution images of the gemstones, processing them with software to classify color shades, and directing each gemstone to its designated position on the automated conveyor. Experimental results demonstrate that the automated color sorting machine, integrated with the conveyor system, achieves high speed and accuracy, significantly reducing labor costs and enhancing the efficiency of gemstone color sorting.
คณะวิทยาศาสตร์
A smartphone-based colorimetric sensor for quantitative detection of pyridoxine (Vitamin B6, VB-6) in functional drink samples has been realized by developing double layer hydrogel. Electrostatic interaction initiates the cross-linking and produces double layer hydrogel.
คณะบริหารธุรกิจ
CO Breathalyzer with Voice Response is the device to measured the level of CO residual in a person's lung who consume tobacco. Measuring residual CO in human breath can identify the tobacco addiction level instead of measuring nicotine in blood.