KMITL Innovation Expo 2025 Logo

BottleBank - Automatic Waste Collection Bin for Plastic and Cans

Abstract

This project presents the development of an automatic recycling machine for plastic bottles and cans, utilizing Machine Learning for packaging classification through image processing, integrated with smart sensor systems for quality inspection and operation control. The system connects to a Web Application for real-time monitoring and control. Once the packaging type is verified, the system automatically calculates the refund value and processes payment through e-wallet or issues cash vouchers. The system can be installed in public spaces to promote waste segregation at source, reduce contamination, and increase recycling efficiency. It also provides financial incentives to encourage public participation in waste management. This project demonstrates the potential of combining Machine Learning and smart sensor systems in developing accurate, convenient, and sustainable waste management solutions.

Objective

ปัจจุบันปัญหาขยะเป็นหนึ่งในปัญหาสิ่งแวดล้อมที่มีผลกระทบต่อทั้งมนุษย์และธรรมชาติ โดยเฉพาะอย่างยิ่งการจัดการขยะพลาสติกและกระป๋องที่ยังคงเป็นปัญหาหลักในการรีไซเคิล ขยะเหล่านี้มักจะถูกทิ้งในสถานที่ไม่เหมาะสม หรือถูกแยกประเภทผิด ทำให้กระบวนการรีไซเคิลไม่สามารถทำได้อย่างมีประสิทธิภาพและเต็มที่ นอกจากนี้การคัดแยกขยะจากต้นทางยังไม่เป็นที่นิยมและยังขาดระบบที่มีความสะดวกสบายและเข้าถึงง่ายสำหรับประชาชนทั่วไป ในปัจจุบันมีการพัฒนาเทคโนโลยีที่ช่วยในกระบวนการคัดแยกขยะ โดยเฉพาะการใช้ Machine Learning และระบบเซนเซอร์อัจฉริยะในการจำแนกประเภทบรรจุภัณฑ์ผ่านการประมวลผลภาพ ซึ่งมีศักยภาพในการเพิ่มประสิทธิภาพของกระบวนการคัดแยกขยะและลดข้อผิดพลาดจากการแยกประเภทขยะที่ไม่ถูกต้อง นอกจากนี้ยังสามารถสร้างแรงจูงใจให้ประชาชนมีส่วนร่วมในการจัดการขยะได้ผ่านการให้ผลตอบแทนทางการเงิน เช่น การจ่ายเงินผ่าน e-wallet หรือออกคูปองแลกเงินสด โครงงานนี้จึงมีความสำคัญในการนำเทคโนโลยี Machine Learning และระบบเซนเซอร์อัจฉริยะมาประยุกต์ใช้ในการพัฒนาระบบตู้รับซื้ออัตโนมัติที่สามารถคัดแยกและรีไซเคิลขวดพลาสติกและกระป๋องได้อย่างมีประสิทธิภาพและสะดวกสบาย สร้างแรงจูงใจในการรีไซเคิลและมีส่วนช่วยในการแก้ไขปัญหาขยะในระดับสาธารณะ

Other Innovations

Improving surface water quality via coagulation using Moringa, Roselle, and Tamarind seed extract.

คณะวิทยาศาสตร์

Improving surface water quality via coagulation using Moringa, Roselle, and Tamarind seed extract.

This study aimed to investigate the effectiveness of extracts from moringa seeds, roselle seeds, and tamarind seeds as coagulants to improve water quality in surface water sources. Extracts from these seeds serve as environmentally friendly coagulants and provide alternative options for enhancing surface water quality. The turbidity of surface water sources ranged between 14 and 24 NTU. The coagulation process used the Jar Test method, where the moringa seed, roselle seed, and tamarind seed extracts functioned as both primary coagulants and coagulant aids. In the preparation process, the seeds were finely ground and extracted using a 0.5-M sodium chloride (NaCl) solution. These extracts were then applied as coagulants to reduce turbidity and enhance water quality, with each concentration tested in 300 ml of water. The results indicated that the most effective way to remove turbidity using 2,000 mg/L of moringa seed extract, achieving a turbidity reduction of approximately 73.19% at a cost of 0.0309 baht per 300 ml of water. Followed by Tamarind seed extract, with a concentration of 4,000 mg/L, followed with a turbidity reduction of approximately 56.75% at a cost of 0.0933 baht per 300 ml. Lastly, roselle seed extract at 6,000 mg/L achieved a turbidity reduction of approximately 32.67% at a cost of 0.0567 baht per 300 ml of water.

Read more
APS Evolution: Sustainable Automated Parking Innovation for User-Centric Solutions

คณะบริหารธุรกิจ

APS Evolution: Sustainable Automated Parking Innovation for User-Centric Solutions

Parking space shortages in urban areas contribute to traffic congestion, inefficient land use, and environmental challenges. Automated Parking Systems (APS) provide an innovative solution by optimizing space utilization, reducing search times, and minimizing carbon emissions. This research investigates key factors influencing user adoption of APS technology using the UTAUT2 framework, focusing on variables such as Performance Expectancy, Effort Expectancy, Social Influence, Trust in Technology, and Environmental Consciousness. The APS Evolution project presents a smart parking solution that enhances efficiency, minimizes environmental impact, and improves user experience in urban settings. The initiative emphasizes technology-driven urban mobility and sustainable parking management to align with the evolving needs of modern cities.

Read more
Artifical intelligence for agriculture and enviroment

คณะวิศวกรรมศาสตร์

Artifical intelligence for agriculture and enviroment

Artificial intelligence for agriculture and environment is a collection of significant models for enviromental friendly Thailand development. The models create with machine learning and deep learning by Near infrared spectroscopy research center for agricultural and food products, including: Determining the nutrient needs (N P K) of durian trees by measuring durian leaves using a non-destructive technique using artificial intelligence, Identification of combustion properties of biomass from fast-growing trees and agricultural residues using non-destructive techniques combined with artificial intelligence, and Evaluation of global warming due to biomass combustion using non-destructive techniques using artificial intelligence. The basic technology used is Near infrared Fourier transform spectroscopy technology which measurement and output display can be done quickly without chemical, no requirement for special expert, and measurement price per sample is very low. But the instrument cannot be produced in Thailand.

Read more