This project presents the development of an automatic recycling machine for plastic bottles and cans, utilizing Machine Learning for packaging classification through image processing, integrated with smart sensor systems for quality inspection and operation control. The system connects to a Web Application for real-time monitoring and control. Once the packaging type is verified, the system automatically calculates the refund value and processes payment through e-wallet or issues cash vouchers. The system can be installed in public spaces to promote waste segregation at source, reduce contamination, and increase recycling efficiency. It also provides financial incentives to encourage public participation in waste management. This project demonstrates the potential of combining Machine Learning and smart sensor systems in developing accurate, convenient, and sustainable waste management solutions.
ปัจจุบันปัญหาขยะเป็นหนึ่งในปัญหาสิ่งแวดล้อมที่มีผลกระทบต่อทั้งมนุษย์และธรรมชาติ โดยเฉพาะอย่างยิ่งการจัดการขยะพลาสติกและกระป๋องที่ยังคงเป็นปัญหาหลักในการรีไซเคิล ขยะเหล่านี้มักจะถูกทิ้งในสถานที่ไม่เหมาะสม หรือถูกแยกประเภทผิด ทำให้กระบวนการรีไซเคิลไม่สามารถทำได้อย่างมีประสิทธิภาพและเต็มที่ นอกจากนี้การคัดแยกขยะจากต้นทางยังไม่เป็นที่นิยมและยังขาดระบบที่มีความสะดวกสบายและเข้าถึงง่ายสำหรับประชาชนทั่วไป ในปัจจุบันมีการพัฒนาเทคโนโลยีที่ช่วยในกระบวนการคัดแยกขยะ โดยเฉพาะการใช้ Machine Learning และระบบเซนเซอร์อัจฉริยะในการจำแนกประเภทบรรจุภัณฑ์ผ่านการประมวลผลภาพ ซึ่งมีศักยภาพในการเพิ่มประสิทธิภาพของกระบวนการคัดแยกขยะและลดข้อผิดพลาดจากการแยกประเภทขยะที่ไม่ถูกต้อง นอกจากนี้ยังสามารถสร้างแรงจูงใจให้ประชาชนมีส่วนร่วมในการจัดการขยะได้ผ่านการให้ผลตอบแทนทางการเงิน เช่น การจ่ายเงินผ่าน e-wallet หรือออกคูปองแลกเงินสด โครงงานนี้จึงมีความสำคัญในการนำเทคโนโลยี Machine Learning และระบบเซนเซอร์อัจฉริยะมาประยุกต์ใช้ในการพัฒนาระบบตู้รับซื้ออัตโนมัติที่สามารถคัดแยกและรีไซเคิลขวดพลาสติกและกระป๋องได้อย่างมีประสิทธิภาพและสะดวกสบาย สร้างแรงจูงใจในการรีไซเคิลและมีส่วนช่วยในการแก้ไขปัญหาขยะในระดับสาธารณะ

วิทยาลัยเทคโนโลยีและนวัตกรรมวัสดุ
-

วิทยาลัยนวัตกรรมการผลิตขั้นสูง
The offline evaluation system for Thai-language large language models (LLMs) is designed to enable experts to efficiently test and assess various LLMs without relying on external services. This enhances the flexibility in selecting LLMs that best suit organizational needs or expert systems (ES). The system operates on personal computers, ensuring data security by eliminating concerns about external data storage. Additionally, it supports model testing and development using Retrieval-Augmented Generation (RAG), allowing access to domain-specific knowledge for accurate, energy-efficient processing. This ensures that the models can perform optimally and effectively meet the demands of organizations and expert systems.

คณะวิทยาศาสตร์
Microalgae are rich in bioactive compounds that may contribute to the growth of probiotics, which require appropriate nutrients, known as prebiotics, to thrive. This study aims to evaluate the effectiveness of crude extracts from intracellular components residues of the microalga Chlorella sp. KLSc61 in promoting the growth of the probiotic bacterium Lactiplantibacillus plantarum JCM1149 under simulated gastrointestinal conditions. The intracellular extracts were obtained using 70% (v/v) ethanol, and their effects on probiotic growth were tested at concentrations of 0.1%, 0.75% and 1.5%. The growth of Lactiplantibacillus plantarum JCM1149 was assessed using the drop plate method. The findings of this study will provide insights into the potential of Chlorella sp. KLSc61 extracts in enhancing probiotic growth, which could lead to the development of synbiotic dietary supplements containing both probiotics and prebiotics. Additionally, this study may serve as a foundation for further research on the role of microalgal extracts in gut health and immune system modulation.