This project presents the development of an automatic recycling machine for plastic bottles and cans, utilizing Machine Learning for packaging classification through image processing, integrated with smart sensor systems for quality inspection and operation control. The system connects to a Web Application for real-time monitoring and control. Once the packaging type is verified, the system automatically calculates the refund value and processes payment through e-wallet or issues cash vouchers. The system can be installed in public spaces to promote waste segregation at source, reduce contamination, and increase recycling efficiency. It also provides financial incentives to encourage public participation in waste management. This project demonstrates the potential of combining Machine Learning and smart sensor systems in developing accurate, convenient, and sustainable waste management solutions.
ปัจจุบันปัญหาขยะเป็นหนึ่งในปัญหาสิ่งแวดล้อมที่มีผลกระทบต่อทั้งมนุษย์และธรรมชาติ โดยเฉพาะอย่างยิ่งการจัดการขยะพลาสติกและกระป๋องที่ยังคงเป็นปัญหาหลักในการรีไซเคิล ขยะเหล่านี้มักจะถูกทิ้งในสถานที่ไม่เหมาะสม หรือถูกแยกประเภทผิด ทำให้กระบวนการรีไซเคิลไม่สามารถทำได้อย่างมีประสิทธิภาพและเต็มที่ นอกจากนี้การคัดแยกขยะจากต้นทางยังไม่เป็นที่นิยมและยังขาดระบบที่มีความสะดวกสบายและเข้าถึงง่ายสำหรับประชาชนทั่วไป ในปัจจุบันมีการพัฒนาเทคโนโลยีที่ช่วยในกระบวนการคัดแยกขยะ โดยเฉพาะการใช้ Machine Learning และระบบเซนเซอร์อัจฉริยะในการจำแนกประเภทบรรจุภัณฑ์ผ่านการประมวลผลภาพ ซึ่งมีศักยภาพในการเพิ่มประสิทธิภาพของกระบวนการคัดแยกขยะและลดข้อผิดพลาดจากการแยกประเภทขยะที่ไม่ถูกต้อง นอกจากนี้ยังสามารถสร้างแรงจูงใจให้ประชาชนมีส่วนร่วมในการจัดการขยะได้ผ่านการให้ผลตอบแทนทางการเงิน เช่น การจ่ายเงินผ่าน e-wallet หรือออกคูปองแลกเงินสด โครงงานนี้จึงมีความสำคัญในการนำเทคโนโลยี Machine Learning และระบบเซนเซอร์อัจฉริยะมาประยุกต์ใช้ในการพัฒนาระบบตู้รับซื้ออัตโนมัติที่สามารถคัดแยกและรีไซเคิลขวดพลาสติกและกระป๋องได้อย่างมีประสิทธิภาพและสะดวกสบาย สร้างแรงจูงใจในการรีไซเคิลและมีส่วนช่วยในการแก้ไขปัญหาขยะในระดับสาธารณะ

คณะเทคโนโลยีการเกษตร
The extreme weathers according to PM 2.5 is a global problem with out any borders. This pollutant can directly attack human health. The objective of the study was aimed to develop medicinal plant essential oil emulsions in order to use to decrease PM 2.5 based on chemical characterization of water-soluble anions and cations. A mount of 31 medicinal plant essential oil emulsions were prepared and then initially careened and tested for their efficiency in reducing PM 2.5 under test chamber by spraying method. It was found that spraying for 1 hr with kaffir lime essential oil emulsion at 0.025% concentration could reduce PM 2.5 obtained from engine exhaust pipe effectively when PM 2.5 of 24.7 µg/m3 was detected within 6 hrs, followed by kaffir lime essential oil emulsion at 0.05% and Eucalyptus essential oil emulsion at 0.05% and 0.025% concentration resulting in 27.3, 30.0 and 95.3 µg/m3, respectively. Whereas, water (blank) and control group (water and carboxymethylcellulose, CMC 0.2%) showed high revels of PM 2.5 with 126.4 and 157.3 µg/m3, respectively. This kaffir lime essential oil emulsion at 0.025% concentration showed 3-6 time decline of PM 2.5 upward 2 hrs compared with control group. Field experiment was performed at 3 Bangkok parks, namely, Suantaweewanarom, Suanbankharepirom and Suanthonbureerom. There were many factors affecting the decline of PM 2.5 caused by this essential oil emulsion, particularly, the windy as well as temperature and humidity. PM 2.5 level tended to be decreased after the beginning of spraying. In general, PM 2.5 levels appeared at those 3 parks were decreased rapidly within 1 hr as by average of 21.8 (7.7-27.3) µg/m3, Whereas, decline of only 6.4 (5.0-8.0) µg/m3 was observed in control (water). Incase of calm wind, (10-20 km/hr) this plant essential oil emulsion could even reduce PM 2.5 at 37.0-44.0 µg/m3 and reached to 13.5-16.5 µg/m3 within 3 hrs. As high level of PM 2.5 as 98.0-101.0 µg/m3 , it could reduce PM 2.5 to be an average of 23.0-26.5 µg/m3 within 3 hrs, Whereas, the use of water performed low capacity of PM 2.5 reduction found with only 31.0-40.0 µg/m3. However, windy condition (15-35 km/hr), the efficacy of this essential oil emulsion seem to be lower but tended to work better than using water alone

คณะวิทยาศาสตร์
This special problem aims to compare the performance of machine learning methods in time series forecasting using lagged time periods as independent variables. The lagged periods are categorized into three groups: lagged by 10 units, lagged by 15 units, and lagged by 20 units. The study employs four machine learning methods: Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The time series data simulated as independent variables diverse including characteristics: Random Walk data, Trending data, and Non-Linear data, with sample sizes of 100, 300, 500, and 700. The research methodology involves splitting the data into 90% for training and 10% for testing. Simulations and analysis are performed using the R programming language, with 1,000 iterations conducted. The results are evaluated based on the average mean squared error (AMSE) and the average mean absolute percentage error (AMAPE) are calculated to identify the best performing method. The research findings revealed that for Random Walk data, the best performing methods are Random Forest and Support Vector Machine. For Trend data, the best performing methods are Random Forest. For Non-Linear data, the best performing methods are Support Vector Machine. When tested with real-world data, the results show that for the Euro-to-Thai Baht exchange rate, the best methods are Random Forest and Support Vector Machine. For the S&P 500 Index in USD, the best performing methods are Random Forest. For the Bank of America Corp Index in USD, the best performing methods are Support Vector Machine.

คณะเทคโนโลยีการเกษตร
Soil is home to a diverse array of living organisms that interact within a complex food web, facilitating energy and nutrient cycling essential for sustaining life above ground. Among these organisms, soil microbes play a crucial role in supporting plant growth. Beneficial microorganisms enhance nutrient availability, improve soil structure by increasing porosity, and strengthen plant resistance to diseases. Conversely, harmful microorganisms, such as plant pathogens, can hinder plant growth and reduce crop yields when present in high concentrations. Neutral microorganisms, which naturally inhabit the soil, contribute to the soil ecosystem without directly impacting plants. A single teaspoon of soil contains over a billion microorganisms, yet only about 1% of them can be cultured in laboratory conditions. This highlights soil as one of the richest reservoirs of microbial diversity on Earth.