KMITL Innovation Expo 2025 Logo

BottleBank - Automatic Waste Collection Bin for Plastic and Cans

Abstract

This project presents the development of an automatic recycling machine for plastic bottles and cans, utilizing Machine Learning for packaging classification through image processing, integrated with smart sensor systems for quality inspection and operation control. The system connects to a Web Application for real-time monitoring and control. Once the packaging type is verified, the system automatically calculates the refund value and processes payment through e-wallet or issues cash vouchers. The system can be installed in public spaces to promote waste segregation at source, reduce contamination, and increase recycling efficiency. It also provides financial incentives to encourage public participation in waste management. This project demonstrates the potential of combining Machine Learning and smart sensor systems in developing accurate, convenient, and sustainable waste management solutions.

Objective

ปัจจุบันปัญหาขยะเป็นหนึ่งในปัญหาสิ่งแวดล้อมที่มีผลกระทบต่อทั้งมนุษย์และธรรมชาติ โดยเฉพาะอย่างยิ่งการจัดการขยะพลาสติกและกระป๋องที่ยังคงเป็นปัญหาหลักในการรีไซเคิล ขยะเหล่านี้มักจะถูกทิ้งในสถานที่ไม่เหมาะสม หรือถูกแยกประเภทผิด ทำให้กระบวนการรีไซเคิลไม่สามารถทำได้อย่างมีประสิทธิภาพและเต็มที่ นอกจากนี้การคัดแยกขยะจากต้นทางยังไม่เป็นที่นิยมและยังขาดระบบที่มีความสะดวกสบายและเข้าถึงง่ายสำหรับประชาชนทั่วไป ในปัจจุบันมีการพัฒนาเทคโนโลยีที่ช่วยในกระบวนการคัดแยกขยะ โดยเฉพาะการใช้ Machine Learning และระบบเซนเซอร์อัจฉริยะในการจำแนกประเภทบรรจุภัณฑ์ผ่านการประมวลผลภาพ ซึ่งมีศักยภาพในการเพิ่มประสิทธิภาพของกระบวนการคัดแยกขยะและลดข้อผิดพลาดจากการแยกประเภทขยะที่ไม่ถูกต้อง นอกจากนี้ยังสามารถสร้างแรงจูงใจให้ประชาชนมีส่วนร่วมในการจัดการขยะได้ผ่านการให้ผลตอบแทนทางการเงิน เช่น การจ่ายเงินผ่าน e-wallet หรือออกคูปองแลกเงินสด โครงงานนี้จึงมีความสำคัญในการนำเทคโนโลยี Machine Learning และระบบเซนเซอร์อัจฉริยะมาประยุกต์ใช้ในการพัฒนาระบบตู้รับซื้ออัตโนมัติที่สามารถคัดแยกและรีไซเคิลขวดพลาสติกและกระป๋องได้อย่างมีประสิทธิภาพและสะดวกสบาย สร้างแรงจูงใจในการรีไซเคิลและมีส่วนช่วยในการแก้ไขปัญหาขยะในระดับสาธารณะ

Other Innovations

ethereal elegant

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

ethereal elegant

A conceptual model inspired by Art Deco art, using the luxury, elegance, balance and the use of black and gold, which are the characteristics of Art Deco art, to create a conceptual model that is balanced, stable, elegant, sequential to look dynamic and uses black and gold to express Art Deco luxury.

Read more
The extraction of prebiotic from spent coffee grounds

คณะอุตสาหกรรมอาหาร

The extraction of prebiotic from spent coffee grounds

Spent coffee grounds (SCG) are a byproduct of the coffee brewing process, and their quantity continues to increase due to the growing global coffee consumption. SCG contain beneficial compounds such as polysaccharides, dietary fibers, and antioxidants, which can be utilized in various applications, including prebiotic extraction. This study focuses on extracting prebiotics from SCG using acid hydrolysis and enzymatic hydrolysis methods to evaluate their potential in promoting the growth of beneficial gut microorganisms. The expected results of this research include adding value to coffee industry waste, reducing organic waste, and providing a sustainable approach to developing prebiotic products for use in the food and health industries. Furthermore, this study aligns with sustainable resource utilization and environmentally friendly practices.

Read more
Café Customer Classification and Behavioral Analysis

คณะวิทยาศาสตร์

Café Customer Classification and Behavioral Analysis

In a highly competitive business, understanding customers is crucial for an organization to determine its success. Effective marketing is not just about offering good products, promotions, or services; it also requires strategies to reach and build strong relationships with customer groups. Segmenting customers is one method that helps businesses deeply understand the needs and behaviors of the customers who use their services In this internship, the objective is to understand the behavior of customers purchasing coffee and tea at a large cafe group by analyzing stored customer data. As a result of this process, customer groups purchasing coffee and tea were segmented using Naive Bayes, Random Forest, and Deep Learning techniques to compare the accuracy and suitability of different Machine Learning methods, and the insights gained from this analysis can be for further development in analyzing other data set in the future

Read more