In today’s rapidly expanding e-commerce environment, the massive volume of product reviews makes it crucial to summarize user opinions in a way that is both comprehensible and practically applicable. This research presents a system for analyzing product reviews using Aspect-Based Sentiment Analysis (ABSA), a Natural Language Processing (NLP) technique that identifies key aspects of a review (such as shipping, product quality, and packaging) and evaluates the sentiment (positive, negative, or neutral) associated with each aspect, allowing both consumers and merchants to gain more efficient access to in-depth insights. This project focuses on developing AI for Thai-language ABSA by utilizing WangchanBERTa, a model trained on Thai data, and comparing it with various standard approaches such as TF-IDF + Logistic Regression, Word2Vec + BiLSTM, and Multilingual BERT (mBERT/XLM-R) to assess their performance in terms of accuracy, speed, and resource usage. Additionally, a dashboard visualization is provided to help users quickly grasp review trends. The expected outcome is to create an AI tool that can be practically employed in the e-commerce industry, enabling consumers to make easier purchasing decisions and assisting merchants in effectively improving their products and services.
ปัจจุบันการซื้อขายสินค้าออนไลน์เติบโตขึ้นอย่างรวดเร็ว ทำให้ข้อมูลรีวิวสินค้าจากผู้บริโภคมีปริมาณเพิ่มขึ้นเป็นจำนวนมาก รีวิวเหล่านี้มีบทบาทสำคัญในการตัดสินใจซื้อของลูกค้าและการปรับปรุงคุณภาพสินค้าของร้านค้า อย่างไรก็ตาม ปริมาณข้อมูลที่มากเกินไปและความหลากหลายของรูปแบบการแสดงความคิดเห็นทำให้การสรุปและวิเคราะห์ข้อมูลเหล่านี้เป็นไปได้ยาก ผู้บริโภคต้องใช้เวลามากในการอ่านรีวิวจำนวนมากเพื่อสรุปแนวโน้มความคิดเห็น ในขณะที่ร้านค้าประสบปัญหาในการวิเคราะห์ข้อมูลรีวิวเพื่อปรับปรุงผลิตภัณฑ์และบริการ เพื่อแก้ไขปัญหานี้ งานวิจัยนี้นำเสนอการประยุกต์ใช้ Aspect-Based Sentiment Analysis (ABSA) ซึ่งเป็นเทคนิคใน Natural Language Processing (NLP) ที่สามารถแยกแยะ แง่มุมสำคัญของรีวิวสินค้า (Aspects) และวิเคราะห์ อารมณ์ของแต่ละแง่มุม (Sentiments) โดยอัตโนมัติ การนำเทคนิคนี้มาใช้จะช่วยให้ผู้บริโภคสามารถรับข้อมูลเชิงลึกจากรีวิวได้ง่ายขึ้น และช่วยให้ร้านค้าสามารถใช้ข้อมูลรีวิวเพื่อปรับปรุงสินค้าและบริการอย่างมีประสิทธิภาพ โครงงานนี้ยังมุ่งเน้นการศึกษาว่า แนวทาง AI แบบใดมีประสิทธิภาพสูงสุดในการทำ ABSA สำหรับภาษาไทย โดยเปรียบเทียบ วิธีการประมวลผลภาษาธรรมชาติแบบดั้งเดิม กับเทคนิคการเรียนรู้เชิงลึกที่ทันสมัย เพื่อให้ได้แนวทางที่เหมาะสมที่สุด พร้อมทั้งพัฒนา Dashboard Visualization ที่ช่วยให้ข้อมูลรีวิวถูกนำเสนอในรูปแบบที่เข้าใจง่ายและสามารถนำไปใช้งานจริงในอุตสาหกรรมอีคอมเมิร์ซ

คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี
This study aims to develop a board game on mushrooms production with cooperative learning and to examine its effects on the learning achievement of third-year vocational certificate students in the mushroom production course. The research instruments included a board game designed using the Educational Boardgame Design Canvas framework, comprising 60 cards (7 main cards, 24 secondary cards, and 29 additional cards). The board game was implemented alongside the Learning Together (LT) cooperative learning approach, following the ASSURE Model for instructional media design. Pre- and post-tests, along with a satisfaction questionnaire, were used to assess student performance and engagement. The findings revealed a statistically significant improvement at the .05 level in students' learning achievement before and after using the board game. At Ratchaburi College of Agriculture and Technology, the post-test mean score was 16.00, compared to a pre-test mean score of 12.50. Student satisfaction with the learning approach was at the highest level, with an average satisfaction score of 4.69. To further refine and expand the study, the board game was also implemented at the Uthai Thani College of Agriculture and Technology, where similar improvements were observed. The post-test mean score increased to 11.21, compared to a pre-test mean score of 7.48, confirming the research hypothesis. Student satisfaction at Uthai Thani College of Agriculture and Technology was also high, with an average satisfaction score of 4.39. These results suggest that integrating board games with cooperative learning effectively enhances student achievement and engagement in agricultural education.

คณะวิทยาศาสตร์
This project presents the development of a "Smart Cat House" using Internet of Things (IoT) and image processing technology to facilitate and enhance the safety of cat care for owners. The infrastructure of the smart cat house consists of an ESP8266 board connected to an ESP32 CAM camera for cat monitoring, and an Arduino board that controls various sensors such as a motion sensor in the litter box, a DHT22 temperature and humidity sensor, an ultrasonic water and food level sensor, including a water supply system for cats, an automatic feeding system, and a ventilation system controlled by a DC FAN that adjusts its operation according to the measured temperature to maintain a suitable environment. There is also an IR sensor to detect the cat's entry into the litter box and an automatic sand changing system with a SERVO MOTOR. All systems are connected and controlled through the Blynk application, which can be used on mobile phones, allowing owners to monitor and care for their pets remotely. Cat detection and identification uses image processing technology from the ESP32 CAM camera in conjunction with YOLO (You Only Look Once), a high-performance object detection algorithm, to detect and distinguish between cats and people. Data from various sensors are sent to the Arduino board to control the operation of various devices in the smart cat house, such as turning lights on and off, automatically changing sand, adjusting temperature and humidity, feeding food and water at scheduled times, or ventilation. The use of a connection system via ESP8266 and the Blynk application makes it easy and convenient to control various devices. Owners can monitor and control the operation of the entire system from anywhere with internet access.

คณะอุตสาหกรรมอาหาร
Plant-based refers to food or products that are primarily made from plants. It can be divided into two categories: one is food that comes entirely from plants and does not include any animal products, and the other is food that contains small amounts of animal products, such as products that contain milk and eggs in limited quantities, which may also be considered part of the definition of plant-based. Plant-based meat products that closely resemble real meat and attract consumers are considered a relatively new innovation. Although tofu, tempeh, and seitan have been around for a long time, recent discoveries have led to the production of plant-based meat products that provide a sensory experience, making it difficult for consumers to distinguish between real meat and plant-based meat. Furthermore, the development of plant-based food products must prioritize quality and safety to maximize consumer benefits. Textured Vegetable Protein (TVP) is a plant-based protein made from soybeans using an extruder. It is used as a primary ingredient in the production of plant-based food products due to several advantages. These include: • High Protein Content: TVP is made from soybeans with the fat extracted, resulting in a high protein content. • Texture: When rehydrated, TVP has a texture that closely resembles meat. • Versatility: TVP has a neutral flavor, allowing it to easily absorb the flavors of various seasonings and sauces. • Cost-Effectiveness: Compared to other protein sources, TVP is relatively inexpensive while providing desirable characteristics. These benefits make TVP an attractive option in the production of plant-based foods. This study focuses on developing TVP into a plant-based crab cake and investigating the shelf life of the product in a tightly sealed container under refrigeration. It also analyzes the hygiene and cleanliness of the production process and how these factors affect the presence or growth of microorganisms that may pose a risk to consumers, referencing the cold food safety standards of Thailand. Finally, recommendations for cleaning operational areas will be provided to establishments as a guideline for developing preliminary food safety procedures in laboratory settings.