In today’s rapidly expanding e-commerce environment, the massive volume of product reviews makes it crucial to summarize user opinions in a way that is both comprehensible and practically applicable. This research presents a system for analyzing product reviews using Aspect-Based Sentiment Analysis (ABSA), a Natural Language Processing (NLP) technique that identifies key aspects of a review (such as shipping, product quality, and packaging) and evaluates the sentiment (positive, negative, or neutral) associated with each aspect, allowing both consumers and merchants to gain more efficient access to in-depth insights. This project focuses on developing AI for Thai-language ABSA by utilizing WangchanBERTa, a model trained on Thai data, and comparing it with various standard approaches such as TF-IDF + Logistic Regression, Word2Vec + BiLSTM, and Multilingual BERT (mBERT/XLM-R) to assess their performance in terms of accuracy, speed, and resource usage. Additionally, a dashboard visualization is provided to help users quickly grasp review trends. The expected outcome is to create an AI tool that can be practically employed in the e-commerce industry, enabling consumers to make easier purchasing decisions and assisting merchants in effectively improving their products and services.
ปัจจุบันการซื้อขายสินค้าออนไลน์เติบโตขึ้นอย่างรวดเร็ว ทำให้ข้อมูลรีวิวสินค้าจากผู้บริโภคมีปริมาณเพิ่มขึ้นเป็นจำนวนมาก รีวิวเหล่านี้มีบทบาทสำคัญในการตัดสินใจซื้อของลูกค้าและการปรับปรุงคุณภาพสินค้าของร้านค้า อย่างไรก็ตาม ปริมาณข้อมูลที่มากเกินไปและความหลากหลายของรูปแบบการแสดงความคิดเห็นทำให้การสรุปและวิเคราะห์ข้อมูลเหล่านี้เป็นไปได้ยาก ผู้บริโภคต้องใช้เวลามากในการอ่านรีวิวจำนวนมากเพื่อสรุปแนวโน้มความคิดเห็น ในขณะที่ร้านค้าประสบปัญหาในการวิเคราะห์ข้อมูลรีวิวเพื่อปรับปรุงผลิตภัณฑ์และบริการ เพื่อแก้ไขปัญหานี้ งานวิจัยนี้นำเสนอการประยุกต์ใช้ Aspect-Based Sentiment Analysis (ABSA) ซึ่งเป็นเทคนิคใน Natural Language Processing (NLP) ที่สามารถแยกแยะ แง่มุมสำคัญของรีวิวสินค้า (Aspects) และวิเคราะห์ อารมณ์ของแต่ละแง่มุม (Sentiments) โดยอัตโนมัติ การนำเทคนิคนี้มาใช้จะช่วยให้ผู้บริโภคสามารถรับข้อมูลเชิงลึกจากรีวิวได้ง่ายขึ้น และช่วยให้ร้านค้าสามารถใช้ข้อมูลรีวิวเพื่อปรับปรุงสินค้าและบริการอย่างมีประสิทธิภาพ โครงงานนี้ยังมุ่งเน้นการศึกษาว่า แนวทาง AI แบบใดมีประสิทธิภาพสูงสุดในการทำ ABSA สำหรับภาษาไทย โดยเปรียบเทียบ วิธีการประมวลผลภาษาธรรมชาติแบบดั้งเดิม กับเทคนิคการเรียนรู้เชิงลึกที่ทันสมัย เพื่อให้ได้แนวทางที่เหมาะสมที่สุด พร้อมทั้งพัฒนา Dashboard Visualization ที่ช่วยให้ข้อมูลรีวิวถูกนำเสนอในรูปแบบที่เข้าใจง่ายและสามารถนำไปใช้งานจริงในอุตสาหกรรมอีคอมเมิร์ซ

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
From the current situation and uncertainty; leads to the concept of food security. It is the application of innovation and technology to create high productivity in a limited area. The unused buildings in urban areas were renovated for planting, created as a learning area for planting in urban area. The different methods of growing plants were presented. There are 35 planting innovations for disseminating knowledge, to create food security, self-reliant, supports sustainable living.

คณะวิศวกรรมศาสตร์
This project aims to develop a conceptual prototype of a weapon aiming system that simulates an anti-aircraft gun. Utilizing an optical camera, the system detects moving objects and calculates their trajectories in real time. The results are then used to control a motorized laser pointer with two degrees of freedom (DoF) of rotation, enabling it to aim at the predicted position of the target. Our system is built on the Raspberry Pi platform, employing machine vision software. The object motion tracking functionality was developed using the OpenCV library, based on color detection algorithms. Experimental results indicate that the system successfully detects the movement of a tennis ball at a rate of 30 frames per second (fps). The current phase involves designing and integratively testing the mechanical system for precise laser pointer position control. This project exemplifies the integration of knowledge in electronics (computer programming) and mechanical engineering (motor control).

คณะวิศวกรรมศาสตร์
Jaundice, a common condition in infants that results from high bilirubin levels in the blood, often requires early diagnosis and monitoring to prevent severe complications, especially in newborns. Traditional diagnostic methods can be time-consuming and subject to human error. This study proposes an approach for real-time jaundice detection using advanced image processing techniques and machine learning algorithms. By analyzing images captured in RGB color spaces, pixel values are extracted and processed through Otsu’s thresholding and morphological operations to detect color patterns indicative of jaundice. A classifier model is then trained to distinguish between normal and jaundiced conditions, offering an automated, accurate, and efficient diagnostic tool. The system’s potential to operate in real-time makes it particularly suited for clinical settings, providing healthcare professionals with timely insights to improve patient outcomes. The proposed method represents a significant innovation in healthcare, combining artificial intelligence and medical imaging to enhance the early detection and management of jaundice, reducing reliance on manual interventions and improving overall healthcare delivery.