In today’s rapidly expanding e-commerce environment, the massive volume of product reviews makes it crucial to summarize user opinions in a way that is both comprehensible and practically applicable. This research presents a system for analyzing product reviews using Aspect-Based Sentiment Analysis (ABSA), a Natural Language Processing (NLP) technique that identifies key aspects of a review (such as shipping, product quality, and packaging) and evaluates the sentiment (positive, negative, or neutral) associated with each aspect, allowing both consumers and merchants to gain more efficient access to in-depth insights. This project focuses on developing AI for Thai-language ABSA by utilizing WangchanBERTa, a model trained on Thai data, and comparing it with various standard approaches such as TF-IDF + Logistic Regression, Word2Vec + BiLSTM, and Multilingual BERT (mBERT/XLM-R) to assess their performance in terms of accuracy, speed, and resource usage. Additionally, a dashboard visualization is provided to help users quickly grasp review trends. The expected outcome is to create an AI tool that can be practically employed in the e-commerce industry, enabling consumers to make easier purchasing decisions and assisting merchants in effectively improving their products and services.
ปัจจุบันการซื้อขายสินค้าออนไลน์เติบโตขึ้นอย่างรวดเร็ว ทำให้ข้อมูลรีวิวสินค้าจากผู้บริโภคมีปริมาณเพิ่มขึ้นเป็นจำนวนมาก รีวิวเหล่านี้มีบทบาทสำคัญในการตัดสินใจซื้อของลูกค้าและการปรับปรุงคุณภาพสินค้าของร้านค้า อย่างไรก็ตาม ปริมาณข้อมูลที่มากเกินไปและความหลากหลายของรูปแบบการแสดงความคิดเห็นทำให้การสรุปและวิเคราะห์ข้อมูลเหล่านี้เป็นไปได้ยาก ผู้บริโภคต้องใช้เวลามากในการอ่านรีวิวจำนวนมากเพื่อสรุปแนวโน้มความคิดเห็น ในขณะที่ร้านค้าประสบปัญหาในการวิเคราะห์ข้อมูลรีวิวเพื่อปรับปรุงผลิตภัณฑ์และบริการ เพื่อแก้ไขปัญหานี้ งานวิจัยนี้นำเสนอการประยุกต์ใช้ Aspect-Based Sentiment Analysis (ABSA) ซึ่งเป็นเทคนิคใน Natural Language Processing (NLP) ที่สามารถแยกแยะ แง่มุมสำคัญของรีวิวสินค้า (Aspects) และวิเคราะห์ อารมณ์ของแต่ละแง่มุม (Sentiments) โดยอัตโนมัติ การนำเทคนิคนี้มาใช้จะช่วยให้ผู้บริโภคสามารถรับข้อมูลเชิงลึกจากรีวิวได้ง่ายขึ้น และช่วยให้ร้านค้าสามารถใช้ข้อมูลรีวิวเพื่อปรับปรุงสินค้าและบริการอย่างมีประสิทธิภาพ โครงงานนี้ยังมุ่งเน้นการศึกษาว่า แนวทาง AI แบบใดมีประสิทธิภาพสูงสุดในการทำ ABSA สำหรับภาษาไทย โดยเปรียบเทียบ วิธีการประมวลผลภาษาธรรมชาติแบบดั้งเดิม กับเทคนิคการเรียนรู้เชิงลึกที่ทันสมัย เพื่อให้ได้แนวทางที่เหมาะสมที่สุด พร้อมทั้งพัฒนา Dashboard Visualization ที่ช่วยให้ข้อมูลรีวิวถูกนำเสนอในรูปแบบที่เข้าใจง่ายและสามารถนำไปใช้งานจริงในอุตสาหกรรมอีคอมเมิร์ซ

คณะอุตสาหกรรมอาหาร
This research investigates active packaging films made from polyvinyl alcohol (PVA) and nanocellulose fibers (NFC), incorporating silver nanoparticles (AgNPs) synthesized from Terminalia chebula extract, which possesses antibacterial and antifungal properties. The developed films were tested for their mechanical properties, microbial inhibition, and biodegradability. The results showed that the addition of AgNPs from Terminalia chebula enhanced product protection and effectively extended the shelf life of strawberries while being environmentally friendly.

คณะวิทยาศาสตร์
In raising crickets for meat consumption, the growth rate and growth period of crickets are important data used to identify the number of crickets per breeding area at each age. Therefore, the researcher has an idea to create a system for monitoring the growth rate of crickets in a closed system using an infrared camera combined with computer image processing to study the growth and identify the growth period of crickets at each age in order to obtain knowledge that can be disseminated to farmers to improve the breeding process for maximum efficiency.

คณะเทคโนโลยีการเกษตร
Climate change and the increasing unpredictability of environmental conditions have aggravated the shortage of animal feed crops during the dry season. This study examines effect of packaging thickness on the quality of corn silage during long-term storage, to maintain its nutritional value during feed shortages. The results show that packaging with thicknesses of 80, 120, 150, and 200 microns effectively maintain good physical quality, including odor, texture, color, and pH levels, during the 0–21day storage period. The silage had a fermented like fruit flavor or vinegar flavor, a silage texture, and well-preserved leaves and stems. Its color remained yellowish-green, with pH values between 3.7 and 4.7. Additionally, lactic acid analysis found that silage in 200-micron-thick packaging for 21 days had the highest lactic acid content (5.64%). However, there were no significant differences in the nutritional value of the silage across different packaging thicknesses