In today’s rapidly expanding e-commerce environment, the massive volume of product reviews makes it crucial to summarize user opinions in a way that is both comprehensible and practically applicable. This research presents a system for analyzing product reviews using Aspect-Based Sentiment Analysis (ABSA), a Natural Language Processing (NLP) technique that identifies key aspects of a review (such as shipping, product quality, and packaging) and evaluates the sentiment (positive, negative, or neutral) associated with each aspect, allowing both consumers and merchants to gain more efficient access to in-depth insights. This project focuses on developing AI for Thai-language ABSA by utilizing WangchanBERTa, a model trained on Thai data, and comparing it with various standard approaches such as TF-IDF + Logistic Regression, Word2Vec + BiLSTM, and Multilingual BERT (mBERT/XLM-R) to assess their performance in terms of accuracy, speed, and resource usage. Additionally, a dashboard visualization is provided to help users quickly grasp review trends. The expected outcome is to create an AI tool that can be practically employed in the e-commerce industry, enabling consumers to make easier purchasing decisions and assisting merchants in effectively improving their products and services.
ปัจจุบันการซื้อขายสินค้าออนไลน์เติบโตขึ้นอย่างรวดเร็ว ทำให้ข้อมูลรีวิวสินค้าจากผู้บริโภคมีปริมาณเพิ่มขึ้นเป็นจำนวนมาก รีวิวเหล่านี้มีบทบาทสำคัญในการตัดสินใจซื้อของลูกค้าและการปรับปรุงคุณภาพสินค้าของร้านค้า อย่างไรก็ตาม ปริมาณข้อมูลที่มากเกินไปและความหลากหลายของรูปแบบการแสดงความคิดเห็นทำให้การสรุปและวิเคราะห์ข้อมูลเหล่านี้เป็นไปได้ยาก ผู้บริโภคต้องใช้เวลามากในการอ่านรีวิวจำนวนมากเพื่อสรุปแนวโน้มความคิดเห็น ในขณะที่ร้านค้าประสบปัญหาในการวิเคราะห์ข้อมูลรีวิวเพื่อปรับปรุงผลิตภัณฑ์และบริการ เพื่อแก้ไขปัญหานี้ งานวิจัยนี้นำเสนอการประยุกต์ใช้ Aspect-Based Sentiment Analysis (ABSA) ซึ่งเป็นเทคนิคใน Natural Language Processing (NLP) ที่สามารถแยกแยะ แง่มุมสำคัญของรีวิวสินค้า (Aspects) และวิเคราะห์ อารมณ์ของแต่ละแง่มุม (Sentiments) โดยอัตโนมัติ การนำเทคนิคนี้มาใช้จะช่วยให้ผู้บริโภคสามารถรับข้อมูลเชิงลึกจากรีวิวได้ง่ายขึ้น และช่วยให้ร้านค้าสามารถใช้ข้อมูลรีวิวเพื่อปรับปรุงสินค้าและบริการอย่างมีประสิทธิภาพ โครงงานนี้ยังมุ่งเน้นการศึกษาว่า แนวทาง AI แบบใดมีประสิทธิภาพสูงสุดในการทำ ABSA สำหรับภาษาไทย โดยเปรียบเทียบ วิธีการประมวลผลภาษาธรรมชาติแบบดั้งเดิม กับเทคนิคการเรียนรู้เชิงลึกที่ทันสมัย เพื่อให้ได้แนวทางที่เหมาะสมที่สุด พร้อมทั้งพัฒนา Dashboard Visualization ที่ช่วยให้ข้อมูลรีวิวถูกนำเสนอในรูปแบบที่เข้าใจง่ายและสามารถนำไปใช้งานจริงในอุตสาหกรรมอีคอมเมิร์ซ

คณะวิศวกรรมศาสตร์
Designing advanced printed circuit boards for industrial applications involves a variety of steps and methods depending on each company. From what I have learned, I have used Cadence Allegro to design printed circuit boards. This internship was designed on a variety of boards with varying levels of difficulty. Learning in this internship could not be learned in detail within the university. I had to work with many departments within Analog Devices (Thailand) Company. This design was assisted by a mentor who took care of and taught me the work, allowing me to complete the co-operative successfully.

คณะวิศวกรรมศาสตร์
-

วิทยาลัยการจัดการนวัตกรรมและอุตสาหกรรม
Air Rack is a product designed to address businesses with limited space and budget constraints for server rooms, cooling systems, and noise management. This system enables efficient use of IT equipment in open spaces, supporting both On-premise and On-cloud operations. It converts sensor data into digital information and displays it via a Dashboard, allowing users to monitor, analyze, and control the system remotely. Additionally, Air Rack significantly reduces power consumption and the costs associated with traditional server room management.