Currently, climate change and human activities are causing rapid deterioration of coral reefs worldwide. Monitoring coral health is essential for marine ecosystem conservation. This project focuses on developing an Artificial Intelligence (AI) model to classify coral health into four categories: Healthy, Bleached, Pale, and Dead using Deep Learning techniques. With pre-trained convolutional neural network (CNN) for image classification. To improve accuracy and mitigate overfitting, 5-fold Cross-Validation is employed during training, and the best-performing model is saved. The results of this project can be applied to monitor coral reef conditions and assist marine scientists in analyzing coral health more efficiently and accurately. This contributes to better conservation planning for marine ecosystems in the future.
ปะการังเป็นองค์ประกอบสำคัญของระบบนิเวศทางทะเล แต่กำลังเผชิญกับภาวะเสื่อมโทรมจากภาวะโลกร้อนและกิจกรรมของมนุษย์ การตรวจสอบสุขภาพของปะการังในปัจจุบันอาศัยการสำรวจภาคสนาม ซึ่งใช้เวลานานและอาจเกิดข้อผิดพลาด โครงการนี้จึงนำเทคโนโลยีปัญญาประดิษฐ์มาใช้ในการวิเคราะห์ภาพถ่ายปะการัง ช่วยให้การจำแนกสุขภาพของปะการังมีความรวดเร็วและแม่นยำยิ่งขึ้น
วิทยาลัยวิศวกรรมสังคีต
This project explores the therapeutic potential of binaural beats within a 3D soundscape environment, focusing on the effects of left-right (L-R) beating sound positioning. Using Dolby Atmos technology to create immersive auditory experiences, the research aims to investigate how varying spatial beating sound placements in binaural beat therapy influence mental and emotional healing. Binaural beats, a form of auditory brainwave entrainment, have been shown to promote relaxation, reduce anxiety, and enhance cognitive performance. However, there has been limited exploration of how spatial sound technologies, like Dolby Atmos, can enhance the efficacy of these therapies. This study examines how different beating L-R configurations in a 3D soundscape impact the listener’s perception and therapeutic outcomes. Participants will experience binaural beat sessions in various beating L-R orientations, and physiological and psychological measures, such as heart rate variability and self-reported relaxation levels, will be assessed. The results are expected to provide new insights into the interaction between spatial audio environments and sound-based therapies, potentially improving sound therapy practices by leveraging advanced audio technologies.
คณะสถาปัตยกรรม ศิลปะและการออกแบบ
The " Center of Invention for Future and Sustainability Project (Continuing)" serves as a continuation of a pilot initiative focused on the retrofitting of older buildings (Vach. 7), specifically a five-story structure. The primary aim of this project is to develop methodologies for enhancing the sustainability of existing buildings in order to mitigate carbon dioxide emissions. In the execution of the Future and Sustainability Innovation Development Center Project (Continuing), a comprehensive analysis of relevant data and theoretical frameworks has been undertaken, leading to the formulation of a research methodology designed to identify optimal strategies for retrofitting older buildings to reduce carbon dioxide emissions. This approach is structured into three principal phases: the combustion of fuels associated with transportation, labor, and materials; the electricity consumption during the construction process; and the accumulation of greenhouse gases from both existing and new construction materials. The project employs an experimental research design, wherein empirical data is collected to evaluate and quantify the equivalent carbon dioxide emissions arising from the construction of new buildings compared to the retrofitting of the selected case study building. Subsequent analysis of the collected data revealed that retrofitting the existing structure—through the integration of sustainable design principles—resulted in greenhouse gas emissions of 11.88 kgCO2e/sq.m. In contrast, the emissions associated with new building construction amounted to 299.35 kgCO2e/sq.m., indicating a reduction in carbon dioxide emissions by a factor of approximately 26 when compared to the construction of new buildings.
วิทยาเขตชุมพรเขตรอุดมศักดิ์
This project focuses on developing a work tracking system for team members. Python is used to extract data from Excel files and import it into a SQL Server database for systematic data management. The system includes a function to notify task status via LINE and displays reports via Power BI, allowing supervisors to track progress and evaluate team members' performance efficiently. Additionally, the system helps promote work and time management skills for team members.