KMITL Innovation Expo 2025 Logo

Coral In focus

Abstract

Currently, climate change and human activities are causing rapid deterioration of coral reefs worldwide. Monitoring coral health is essential for marine ecosystem conservation. This project focuses on developing an Artificial Intelligence (AI) model to classify coral health into four categories: Healthy, Bleached, Pale, and Dead using Deep Learning techniques. With pre-trained convolutional neural network (CNN) for image classification. To improve accuracy and mitigate overfitting, 5-fold Cross-Validation is employed during training, and the best-performing model is saved. The results of this project can be applied to monitor coral reef conditions and assist marine scientists in analyzing coral health more efficiently and accurately. This contributes to better conservation planning for marine ecosystems in the future.

Objective

ปะการังเป็นองค์ประกอบสำคัญของระบบนิเวศทางทะเล แต่กำลังเผชิญกับภาวะเสื่อมโทรมจากภาวะโลกร้อนและกิจกรรมของมนุษย์ การตรวจสอบสุขภาพของปะการังในปัจจุบันอาศัยการสำรวจภาคสนาม ซึ่งใช้เวลานานและอาจเกิดข้อผิดพลาด โครงการนี้จึงนำเทคโนโลยีปัญญาประดิษฐ์มาใช้ในการวิเคราะห์ภาพถ่ายปะการัง ช่วยให้การจำแนกสุขภาพของปะการังมีความรวดเร็วและแม่นยำยิ่งขึ้น

Other Innovations

Detection of Storage Age Adulteration in Khao Dawk Mali 105 Rice  using Near-Infrared Spectroscopy

คณะวิศวกรรมศาสตร์

Detection of Storage Age Adulteration in Khao Dawk Mali 105 Rice using Near-Infrared Spectroscopy

This research aims to investigate the adulteration of Khao Dawk Mali 105 rice based on storage age using Near-Infrared Spectroscopy (NIRS) with Fourier Transform Near-Infrared Spectroscopy (FT-NIR) in the wavenumber range of 12,500 – 4,000 cm-1 (800 – 2,500 nm). Storage duration significantly impacts the quality of cooked rice. This research is divided into two parts: 1) to investigate the feasibility of separating rice according to storage age (1, 2, and 3 years) using the best model created by an Ensemble method combined with Second Derivative, which achieved an accuracy of 96.3%. 2) To investigate adulteration based on storage age by adulterating at 0% (all 2- and 3-year-old rice), 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% (all 1-year-old rice). The best model was created using Gaussian Process Regression (GPR) combined with Smoothing + Multiplicative Scatter Correction (MSC), with coefficients of determination (r²), root mean square error of prediction (RMSEP), bias, and prediction ability (RPD) values of 0.92, 8.6%, 0.9%, and 3.6 respectively. This demonstrates that the adulteration model can be applied to separate rice by storage age (1, 2, and 3 years). Additionally, the color values of rice with different storage ages show differences in L* and b* values.

Read more
Designing a portable and sound-confining space

วิทยาลัยวิศวกรรมสังคีต

Designing a portable and sound-confining space

This project studies how to design a portable, sound-confining space that allows users to practice using their voices without disturbing the surroundings.

Read more
Chillhouse with ChillGuys

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Chillhouse with ChillGuys

This project aims to study the load transfer in timber building structures by analyzing weight distribution across key structural components such as beams, columns, and floors, as well as the load-bearing behavior of wood under different conditions. The research incorporates structural calculations and modeling to examine load transfer patterns. Additionally, it enhances skills in design, analysis, and teamwork, providing practical knowledge applicable to real-world construction projects.

Read more