KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Coral In focus

Abstract

Currently, climate change and human activities are causing rapid deterioration of coral reefs worldwide. Monitoring coral health is essential for marine ecosystem conservation. This project focuses on developing an Artificial Intelligence (AI) model to classify coral health into four categories: Healthy, Bleached, Pale, and Dead using Deep Learning techniques. With pre-trained convolutional neural network (CNN) for image classification. To improve accuracy and mitigate overfitting, 5-fold Cross-Validation is employed during training, and the best-performing model is saved. The results of this project can be applied to monitor coral reef conditions and assist marine scientists in analyzing coral health more efficiently and accurately. This contributes to better conservation planning for marine ecosystems in the future.

Objective

ปะการังเป็นองค์ประกอบสำคัญของระบบนิเวศทางทะเล แต่กำลังเผชิญกับภาวะเสื่อมโทรมจากภาวะโลกร้อนและกิจกรรมของมนุษย์ การตรวจสอบสุขภาพของปะการังในปัจจุบันอาศัยการสำรวจภาคสนาม ซึ่งใช้เวลานานและอาจเกิดข้อผิดพลาด โครงการนี้จึงนำเทคโนโลยีปัญญาประดิษฐ์มาใช้ในการวิเคราะห์ภาพถ่ายปะการัง ช่วยให้การจำแนกสุขภาพของปะการังมีความรวดเร็วและแม่นยำยิ่งขึ้น

Other Innovations

AUTOMATED VERTICAL METAL SHEET STORAGE SYSTEM

คณะวิศวกรรมศาสตร์

AUTOMATED VERTICAL METAL SHEET STORAGE SYSTEM

This project aims to introduce an Automated Vertical Metal Sheet Storage System. The project is aimed at teaching how to make an Automation Vertical Metal Sheet Storage System with the integration of microcontroller devices. The project is divided into two main sections, which are the structure and control systems of the Automation Vertical Metal Sheet Storage System that will be designed and drawn through a computer program and constructed using major aluminum structures upon completion of their actual sizes outlined in the programs. Also, a Microcontroller control system using GX Works 2 program from Mitsubishi PLC has been designed for this purpose where it controls up and down movements as well as sideways movement of the pallet. It also has a weighing capability along with touch screen display for displaying information about the steel plates and controlling the Automation Vertical Metal Sheet Storage System with safety light curtain that protect users safety. These tests have shown that the machine operates normally. There are few mistakes whose rates fall within those expected by humans.

Read more
DISPOSABLE AND LOW-COST GOLDLEAF ELECTRODE-DECORATED AuPt-Ru/RGO NANOCOMPOSITE FOR ULTRASENSITIVE ELECTROCHEMICAL APTASENSOR QUANTIFICATION OF  AFLATOXIN B1 IN AGRICULTURAL PRODUCTS

คณะวิทยาศาสตร์

DISPOSABLE AND LOW-COST GOLDLEAF ELECTRODE-DECORATED AuPt-Ru/RGO NANOCOMPOSITE FOR ULTRASENSITIVE ELECTROCHEMICAL APTASENSOR QUANTIFICATION OF AFLATOXIN B1 IN AGRICULTURAL PRODUCTS

With the urgent need for rapid screening of Aflatoxin B1 (AFB1) due to its association with increased liver cirrhosis and hepatocellular carcinoma cases from contaminated agricultural foods, we propose a novel electrochemical aptasensor. This aptasensor is based on trimetallic nanoparticles AuPt-Ru supported by reduced graphene oxide (AuPt-Ru/RGO) modified on a low-cost and disposable goldleaf electrode (GLEAuPt-Ru/RGO) for detection of AFB1. The trimetallic nanoparticle AuPt-Ru was synthesized using an ultrasonic-driven chemical reduction method. The synthesized AuPt-Ru exhibited a waxberry-like appearance, with AuPt core-shell structure and ruthenium dispersed over the particles. The average particle size was 57.35 ± 8.24 nm. The AuPt-Ru was integrated into RGO sheets (inner diameter of 0.5 to 1.6 µm) in order to enhance electron transfer efficiency and increase the specific immobilizing surface area of the thiol-5’-terminated modified aptamer (Apt) to target AFB1. With a large electrochemical surface area and low electrochemical impedance, GLEAuPt-Ru/RGO displays ultra-high sensitivity for AFB1 detection. Differential pulse voltammetry (DPV) measurements revealed a linear range for AFB1 detection range from 0.3 to 30.0 pg mL-1 (R2 = 0.9972), with a limit of detection (LOD, S/N = 3) and a limit of quantification (LOQ, S/N = 10) of 0.009 pg mL-1 and 0.031 pg mL-1, respectively. The developed aptasensor also demonstrated excellent accuracy in real agricultural products, including dried red chili, garlic, peanut, pepper, and Thai jasmine rice, achieving recovery rates between 94.6 and 107.9%. The fabricated aptamer-based GLEAuPt-Ru/RGO performance is comparable to that of a modified commercial electrode, which has great potential application prospects for detecting AFB1 in agricultural products.

Read more
Synergistic antibacterial activity of human salivary peptide Histatin-5 and Phytosphingosine against Streptococcus mutans biofilm

คณะทันตแพทยศาสตร์

Synergistic antibacterial activity of human salivary peptide Histatin-5 and Phytosphingosine against Streptococcus mutans biofilm

Objective or Background: Dental caries is still one of the most significant dental problems worldwide, with prevalence rates up to 90% among children and adults. Cariogenic bacteria, especially Streptococcus mutans, is the primary microorganism involved in the pathogenesis through carbohydrate metabolism and biofilm formation, which are challenging to eradicate. Histatin-5 (HST-5), a human salivary antimicrobial peptide, has demonstrated antimicrobial activity against various fungal and bacterial pathogens. Phytosphingosine (PHS), an endogenous bioactive sphingolipid found in fungi, plants, and humans, also shows antimicrobial properties. This study aimed to evaluate the killing activity of HST-5 alone and in combination with PHS against S. mutans under biofilm-stimulating conditions. Materials and Methods: Antimicrobial activity against a planktonic culture of S. mutans was evaluated using a time-kill assay, and biofilm-forming capacity was confirmed by crystal violet staining assay. The killing ability against 24h pre-formed biofilm was determined using Transferable Solid Phase (TSP) pin lid model. Synergistic activity between HST-5 and PHS was evaluated using the checkerboard technique. Additionally, the cytotoxicity of the tested agent on human gingival fibroblast cells (hGFs) was assessed after 1 h of incubation using an MTT assay. Results: A time-kill assay revealed that both HST-5 and PHS exhibit time- and concentration-dependent activity against the planktonic form of S. mutans. PHS achieved over 90% killing activity within 15 min at 5 μg/ml, whereas HST-5 required 30 min to reach 90% killing at 20 μM. The biofilm formation capacity of S. mutans was confirmed. The inhibitory concentrations (IC50) of HST-5 and PHS against S. mutans biofilm were 25 μM and 13.5 μg/ml, respectively. A synergistic interaction between HST-5 and PHS, with IC50 values reduced by 8-fold and 16-fold, respectively. No cytotoxic effects were observed in hGFs cells at the concentration of the synergistic interaction. Conclusions: Therefore, the combination of HST-5 and PHS may enhance the effectiveness of anti-infective agents against S. mutans biofilm, potentially preventing the development of dental caries.

Read more