โครงงานนี้จึงได้พัฒนาระบบปัญญาประดิษฐ์สำหรับระบุชนิดเครื่องมือทันตกรรมหัตถการเพื่อตรวจนับจำนวนด้วยวิธีการเรียนรู้เชิงลึก โดยเป็นการตรวจนับความครบถ้วนของอุปกรณ์ที่นำไปใช้ มีใช้วิธีการตรวจจับวัตถุ(Object Detection) ซึ่งการตรวจจับวัตถุช่วยให้สามารถตรวจจับอุปกรณ์ทันตกรรหัตถการทั้งหมดหลังจากการใช้งาน เพื่อเพิ่มประสิทธิภาพ ความแม่นยำ อีกทั้งสามารถตรวจนับเครื่องมือต่างๆได้พร้อมกันหลายๆภาพเพื่อช่วยลดเวลาและความล่าช้าในกระบวนการตรวจสอบและนับจำนวนเครื่องมือทั้งหมด รวมถึงข้อมูลจำนวนและชนิดของอุปกรณ์ สามารถส่งออกไปยังฐานข้อมูลเพื่อนำข้อมูลไปใช้งานต่อได้อีกด้วย
เนื่องจากในปัจจุบันงานทางด้านทันตกรรมมีความซับซ้อนและหลากหลาย อีกทั้งมีการใช้เครื่องมือทางทันตกรรมต่างๆจำนวนมาก โดยหลังจากที่ถูกนำเครื่องมือมาใช้ในการรักษาตามสถานที่ โรงพยาบาลหรือคลินิกทันตกรรม ถ้าไม่มีการจัดการและตรวจสอบกับอุปกรณ์ต่างๆเหล่านี้อาจทำให้เกิดปัญหาต่างๆตามมา เช่น การสูญหายของอุปกรณ์ ซึ่งอาจทำให้สูญเสียค่าใช้จ่ายในการซื้ออุปกรณ์ใหม่โดยไม่จำเป็น ดังนั้นการตรวจสอบและนับเครื่องมือเป็นกระบวนที่สำคัญอย่างมากในการช่วยลดการสูญเสียของอุปกรณ์และปัญหาอื่นๆในการจัดการกับเครื่องมือทันตกรรม การตรวจสอบและนับจำนวนเครื่องมือหลังการใช้รักษาเป็นกระบวนการที่สำคัญอย่างมากโดยมีการใช้เวลาในการตรวจสอบ รวบรวม จัดการ และนับจำนวนของเครื่องมือทั้งหมดโดยมีการใช้บุคลากรของทางโรงพยาบาลหรือคลินิกทันตกรรมและใช้วิธีการนับด้วยมือ ทำให้เกิดล่าช้า อีกทั้งอาจจะเกิดการนับจำนวนเครื่องมือที่ไม่ถูกต้องครบถ้วน มีการบันทึกข้อมูลซับซ้อน และใช้ทรัพยากรคนในการทำงานที่เยอะเกินความจำเป็นอีกด้วยซึ่งส่งผลกระทบต่อการจัดการวางแผนในกระบวนการใช้เครื่องมือในครั้งต่อไป โดยกระบวนการตรวจสอบและนับจำนวนเครื่องมือนี้นอกจากจะช่วยในเรื่องของการระบุชนิดและนับเครื่องมือแล้ว ยังสามารถช่วยเพิ่มประสิทธิภาพในการใช้งานเครื่องมือ วางแผนในการจัดซื้ออุปกรณ์ รวมถึงช่วยลดค่าใช้จ่ายในการจัดซื้อเครื่องมือใหม่อีกด้วย จากปัญหาดังกล่าว โครงงานนี้จึงได้พัฒนาระบบปัญญาประดิษฐ์สำหรับระบุชนิดเครื่องมือทันตกรรมหัตถการเพื่อตรวจนับจำนวนด้วยวิธีการเรียนรู้เชิงลึก โดยเป็นการตรวจนับความครบถ้วนของอุปกรณ์ที่นำไปใช้ มีใช้วิธีการตรวจจับวัตถุ(Object Detection) ซึ่งการตรวจจับวัตถุช่วยให้สามารถตรวจจับอุปกรณ์ทันตกรรหัตถการทั้งหมดหลังจากการใช้งาน เพื่อเพิ่มประสิทธิภาพ ความแม่นยำ อีกทั้งสามารถตรวจนับเครื่องมือต่างๆได้พร้อมกันหลายๆภาพเพื่อช่วยลดเวลาและความล่าช้าในกระบวนการตรวจสอบและนับจำนวนเครื่องมือทั้งหมด รวมถึงข้อมูลจำนวนและชนิดของอุปกรณ์ สามารถส่งออกไปยังฐานข้อมูลเพื่อนำข้อมูลไปใช้งานต่อได้อีกด้วย

คณะวิทยาศาสตร์
ปัญหามลพิษทางอากาศ โดยเฉพาะฝุ่นละอองขนาดเล็ก PM2.5 เป็นปัญหาสำคัญที่ส่งผลกระทบต่อสุขภาพและสิ่งแวดล้อมในกรุงเทพมหานคร โครงการนี้มีวัตถุประสงค์เพื่อวิเคราะห์และระบุปัจจัยที่มีอิทธิพลต่อระดับของ PM2.5 มากที่สุด โดยใช้ข้อมูลคุณภาพอากาศ สภาพอากาศ และปัจจัยแวดล้อมอื่น ๆ ที่เกี่ยวข้อง เพื่อตรวจสอบว่าปัจจัยใด เช่น อุณหภูมิ ความชื้น ความเร็วลม หรือมลพิษจากแหล่งอื่น มีผลต่อความผันผวนของ PM2.5 ผลการศึกษานี้จะช่วยให้สามารถระบุปัจจัยสำคัญที่ส่งผลต่อปริมาณฝุ่น PM2.5 ได้อย่างเป็นระบบ ซึ่งสามารถนำไปใช้เป็นข้อมูลพื้นฐานสำหรับหน่วยงานภาครัฐ นักวิจัย และประชาชนทั่วไปในการวางแผนรับมือและลดผลกระทบจากมลพิษทางอากาศ นอกจากนี้ ผลลัพธ์ที่ได้ยังสามารถนำไปใช้สนับสนุนการตัดสินใจในการกำหนดนโยบายและมาตรการต่าง ๆ เพื่อปรับปรุงคุณภาพอากาศและสุขภาพของประชาชนในระยะยาว

คณะอุตสาหกรรมอาหาร
การใช้น้ำมันพืชซ้ำในการประกอบอาหารส่งผลให้เกิดการเสื่อมสภาพและก่อให้เกิดสารพิษจากปฏิกิริยาออกซิเดชัน การศึกษานี้มุ่งเน้นการเพิ่มเสถียรภาพของน้ำมันพืชโดยใช้เทคโนโลยีคลื่นอัลตราโซนิคร่วมกับการบ่มปลีกล้วย 3 สายพันธุ์ ได้แก่ กล้วยไข่ กล้วยหอม และกล้วยน้ำว้า ซึ่งมีสารประกอบฟีนอลิกและสารต้านอนุมูลอิสระสูง งานวิจัยนี้ศึกษาการฟื้นฟูน้ำมันปาล์มที่ใช้แล้วโดยการบ่มร่วมกับปลีกล้วยที่ผ่านการอบแห้งและบดละเอียด โดยใช้คลื่นอัลตราโซนิคที่อุณหภูมิและระยะเวลาต่างๆ จากนั้นทำการทดสอบคุณภาพน้ำมันที่ได้รับการบ่มผ่านการวิเคราะห์ค่าทางกายภาพ (ปริมาณน้ำอิสระ ความชื้น และค่าสี) ค่าทางเคมี (ค่าดัชนีเปอร์ออกไซด์ ค่าความเป็นกรด และค่าไทโอบาร์บิทูริกแอซิด) และประสิทธิภาพการต้านอนุมูลอิสระ (DPPH, ABTS และ FRAP)

คณะวิศวกรรมศาสตร์
ระบบสร้างภาษามือไทยเชิงกำเนิดมีเป้าหมายในการพัฒนาแพลตฟอร์ม การสร้างแบบจำลอง 3 มิติและแอนิเมชัน ที่สามารถแปลง ประโยคภาษาไทยเป็นท่าทางภาษามือไทย (TSL) ที่ถูกต้องและเป็นธรรมชาติ โครงการนี้ช่วยเสริมสร้างการสื่อสารสำหรับ ชุมชนผู้บกพร่องทางการได้ยินในประเทศไทย โดยใช้แนวทางที่อิงกับ แลนมาร์ก (Landmark-Based Approach) ผ่านการใช้ Vector Quantized Variational Autoencoder (VQVAE) และ Large Language Model (LLM) ในการสร้างภาษามือ ระบบเริ่มต้นด้วยการ ฝึกโมเดล VQVAE โดยใช้ข้อมูลแลนมาร์กที่สกัดจากวิดีโอภาษามือ เพื่อให้โมเดลเรียนรู้ การแทนค่าแบบแฝง (Latent Representations) ของท่าทางภาษามือไทย หลังจากนั้น โมเดลที่ฝึกแล้วจะถูกใช้เพื่อ สร้างลำดับแลนมาร์กของท่าทางเพิ่มเติม ซึ่งช่วยขยายชุดข้อมูลฝึกโดยอ้างอิงจาก BigSign ThaiPBS Dataset เมื่อชุดข้อมูลได้รับการขยายแล้ว ระบบจะทำการ ฝึก LLM เพื่อสร้างลำดับแลนมาร์กที่ถูกต้องจากข้อความภาษาไทย โดยลำดับแลนมาร์กที่ได้จะถูกนำไปใช้ สร้างแอนิเมชันของโมเดล 3 มิติใน Blender เพื่อให้ได้ท่าทางภาษามือที่ลื่นไหลและเป็นธรรมชาติ โครงการนี้ถูกพัฒนาด้วย Python โดยใช้ MediaPipe สำหรับการสกัดแลนมาร์ก OpenCV สำหรับการประมวลผลภาพแบบเรียลไทม์ และ Blender’s Python API สำหรับสร้างแอนิเมชัน 3 มิติ ด้วยการผสานเทคโนโลยี AI, การเข้ารหัสผ่าน VQVAE และการสร้างแลนมาร์กด้วย LLM ระบบนี้มุ่งหวังที่จะ เชื่อมช่องว่างระหว่างข้อความภาษาไทยและภาษามือไทย เพื่อมอบแพลตฟอร์มการแปลภาษามือแบบโต้ตอบ ในเวลาจริง ให้กับชุมชนผู้บกพร่องทางการได้ยินในประเทศไทย