This research presents the development of an AI-powered system designed to automate the identification and quantification of dental surgical instruments. By leveraging deep learning-based object detection, the system ensures the completeness of instrument sets post-procedure. The system's ability to process multiple images simultaneously streamlines the inventory process, reducing manual effort and potential errors. The extracted data on instrument quantity and type can be seamlessly integrated into a database for various downstream applications.
เนื่องจากในปัจจุบันงานทางด้านทันตกรรมมีความซับซ้อนและหลากหลาย อีกทั้งมีการใช้เครื่องมือทางทันตกรรมต่างๆจำนวนมาก โดยหลังจากที่ถูกนำเครื่องมือมาใช้ในการรักษาตามสถานที่ โรงพยาบาลหรือคลินิกทันตกรรม ถ้าไม่มีการจัดการและตรวจสอบกับอุปกรณ์ต่างๆเหล่านี้อาจทำให้เกิดปัญหาต่างๆตามมา เช่น การสูญหายของอุปกรณ์ ซึ่งอาจทำให้สูญเสียค่าใช้จ่ายในการซื้ออุปกรณ์ใหม่โดยไม่จำเป็น ดังนั้นการตรวจสอบและนับเครื่องมือเป็นกระบวนที่สำคัญอย่างมากในการช่วยลดการสูญเสียของอุปกรณ์และปัญหาอื่นๆในการจัดการกับเครื่องมือทันตกรรม การตรวจสอบและนับจำนวนเครื่องมือหลังการใช้รักษาเป็นกระบวนการที่สำคัญอย่างมากโดยมีการใช้เวลาในการตรวจสอบ รวบรวม จัดการ และนับจำนวนของเครื่องมือทั้งหมดโดยมีการใช้บุคลากรของทางโรงพยาบาลหรือคลินิกทันตกรรมและใช้วิธีการนับด้วยมือ ทำให้เกิดล่าช้า อีกทั้งอาจจะเกิดการนับจำนวนเครื่องมือที่ไม่ถูกต้องครบถ้วน มีการบันทึกข้อมูลซับซ้อน และใช้ทรัพยากรคนในการทำงานที่เยอะเกินความจำเป็นอีกด้วยซึ่งส่งผลกระทบต่อการจัดการวางแผนในกระบวนการใช้เครื่องมือในครั้งต่อไป โดยกระบวนการตรวจสอบและนับจำนวนเครื่องมือนี้นอกจากจะช่วยในเรื่องของการระบุชนิดและนับเครื่องมือแล้ว ยังสามารถช่วยเพิ่มประสิทธิภาพในการใช้งานเครื่องมือ วางแผนในการจัดซื้ออุปกรณ์ รวมถึงช่วยลดค่าใช้จ่ายในการจัดซื้อเครื่องมือใหม่อีกด้วย จากปัญหาดังกล่าว โครงงานนี้จึงได้พัฒนาระบบปัญญาประดิษฐ์สำหรับระบุชนิดเครื่องมือทันตกรรมหัตถการเพื่อตรวจนับจำนวนด้วยวิธีการเรียนรู้เชิงลึก โดยเป็นการตรวจนับความครบถ้วนของอุปกรณ์ที่นำไปใช้ มีใช้วิธีการตรวจจับวัตถุ(Object Detection) ซึ่งการตรวจจับวัตถุช่วยให้สามารถตรวจจับอุปกรณ์ทันตกรรหัตถการทั้งหมดหลังจากการใช้งาน เพื่อเพิ่มประสิทธิภาพ ความแม่นยำ อีกทั้งสามารถตรวจนับเครื่องมือต่างๆได้พร้อมกันหลายๆภาพเพื่อช่วยลดเวลาและความล่าช้าในกระบวนการตรวจสอบและนับจำนวนเครื่องมือทั้งหมด รวมถึงข้อมูลจำนวนและชนิดของอุปกรณ์ สามารถส่งออกไปยังฐานข้อมูลเพื่อนำข้อมูลไปใช้งานต่อได้อีกด้วย
คณะวิศวกรรมศาสตร์
The integration of intelligent robotic systems into human-centric environments, such as laboratories, hospitals, and educational institutions, has become increasingly important due to the growing demand for accessible and context-aware assistants. However, current solutions often lack scalability—for instance, relying on specialized personnel to repeatedly answer the same questions as administrators for specific departments—and adaptability to dynamic environments that require real-time situational responses. This study introduces a novel framework for an interactive robotic assistant (Beckerle et al. , 2017) designed to assist during laboratory tours and mitigate the challenges posed by limited human resources in providing comprehensive information to visitors. The proposed system operates through multiple modes, including standby mode and recognition mode, to ensure seamless interaction and adaptability in various contexts. In standby mode, the robot signals readiness with a smiling face animation while patrolling predefined paths or conserving energy when stationary. Advanced obstacle detection ensures safe navigation in dynamic environments. Recognition mode activates through gestures or wake words, using advanced computer vision and real-time speech recognition to identify users. Facial recognition further classifies individuals as known or unknown, providing personalized greetings or context-specific guidance to enhance user engagement. The proposed robot and its 3D design are shown in Figure 1. In interactive mode, the system integrates advanced technologies, including advanced speech recognition (ASR Whisper), natural language processing (NLP), and a large language model Ollama 3.2 (LLM Predictor, 2025), to provide a user-friendly, context-aware, and adaptable experience. Motivated by the need to engage students and promote interest in the RAI department, which receives over 1,000 visitors annually, it addresses accessibility gaps where human staff may be unavailable. With wake word detection, face and gesture recognition, and LiDAR-based obstacle detection, the robot ensures seamless communication in English, alongside safe and efficient navigation. The Retrieval-Augmented Generation (RAG) human interaction system communicates with the mobile robot, built on ROS1 Noetic, using the MQTT protocol over Ethernet. It publishes navigation goals to the move_base module in ROS, which autonomously handles navigation and obstacle avoidance. A diagram is explained in Figure 2. The framework includes a robust back-end architecture utilizing a combination of MongoDB for information storage and retrieval and a RAG mechanism (Thüs et al., 2024) to process program curriculum information in the form of PDFs. This ensures that the robot provides accurate and contextually relevant answers to user queries. Furthermore, the inclusion of smiling face animations and text-to-speech (TTS BotNoi) enhanced user engagement metrics were derived through a combination of observational studies and surveys, which highlighted significant improvements in user satisfaction and accessibility. This paper also discusses capability to operate in dynamic environments and human-centric spaces. For example, handling interruptions while navigating during a mission. The modular design allows for easy integration of additional features, such as gesture recognition and hardware upgrades, ensuring long-term scalability. However, limitations such as the need for high initial setup costs and dependency on specific hardware configurations are acknowledged. Future work will focus on enhancing the system’s adaptability to diverse languages, expanding its use cases, and exploring collaborative interactions between multiple robots. In conclusion, the proposed interactive robotic assistant represents a significant step forward in bridging the gap between human needs and technological advancements. By combining cutting-edge AI technologies with practical hardware solutions, this work offers a scalable, efficient, and user-friendly system that enhances accessibility and user engagement in human-centric spaces.
คณะวิศวกรรมศาสตร์
The production process of the food rancidity indicator label consists of three main steps: 1) preparation of the indicator solution, 2) preparation of the cellulose solution, and 3) formation of the sheet. The indicator solution includes bromothymol blue and methyl red, which act as indicators. The cellulose solution consists of hydroxypropyl methylcellulose, carboxymethyl cellulose, sodium hydroxide, polyethylene glycol 400, and the indicator solution. For the sheet formation, the cellulose solution was mixed with natural latex to increase flexibility and impart hydrophobic properties. After drying, the invention appears as a thin, dark blue label. When exposed to volatile compounds from rancid food, the label changes color from dark blue to green, and then to yellow, corresponding to the increasing amount of volatile compounds from the rancid food.
วิทยาเขตชุมพรเขตรอุดมศักดิ์
-