This research presents the development of an AI-powered system designed to automate the identification and quantification of dental surgical instruments. By leveraging deep learning-based object detection, the system ensures the completeness of instrument sets post-procedure. The system's ability to process multiple images simultaneously streamlines the inventory process, reducing manual effort and potential errors. The extracted data on instrument quantity and type can be seamlessly integrated into a database for various downstream applications.
เนื่องจากในปัจจุบันงานทางด้านทันตกรรมมีความซับซ้อนและหลากหลาย อีกทั้งมีการใช้เครื่องมือทางทันตกรรมต่างๆจำนวนมาก โดยหลังจากที่ถูกนำเครื่องมือมาใช้ในการรักษาตามสถานที่ โรงพยาบาลหรือคลินิกทันตกรรม ถ้าไม่มีการจัดการและตรวจสอบกับอุปกรณ์ต่างๆเหล่านี้อาจทำให้เกิดปัญหาต่างๆตามมา เช่น การสูญหายของอุปกรณ์ ซึ่งอาจทำให้สูญเสียค่าใช้จ่ายในการซื้ออุปกรณ์ใหม่โดยไม่จำเป็น ดังนั้นการตรวจสอบและนับเครื่องมือเป็นกระบวนที่สำคัญอย่างมากในการช่วยลดการสูญเสียของอุปกรณ์และปัญหาอื่นๆในการจัดการกับเครื่องมือทันตกรรม การตรวจสอบและนับจำนวนเครื่องมือหลังการใช้รักษาเป็นกระบวนการที่สำคัญอย่างมากโดยมีการใช้เวลาในการตรวจสอบ รวบรวม จัดการ และนับจำนวนของเครื่องมือทั้งหมดโดยมีการใช้บุคลากรของทางโรงพยาบาลหรือคลินิกทันตกรรมและใช้วิธีการนับด้วยมือ ทำให้เกิดล่าช้า อีกทั้งอาจจะเกิดการนับจำนวนเครื่องมือที่ไม่ถูกต้องครบถ้วน มีการบันทึกข้อมูลซับซ้อน และใช้ทรัพยากรคนในการทำงานที่เยอะเกินความจำเป็นอีกด้วยซึ่งส่งผลกระทบต่อการจัดการวางแผนในกระบวนการใช้เครื่องมือในครั้งต่อไป โดยกระบวนการตรวจสอบและนับจำนวนเครื่องมือนี้นอกจากจะช่วยในเรื่องของการระบุชนิดและนับเครื่องมือแล้ว ยังสามารถช่วยเพิ่มประสิทธิภาพในการใช้งานเครื่องมือ วางแผนในการจัดซื้ออุปกรณ์ รวมถึงช่วยลดค่าใช้จ่ายในการจัดซื้อเครื่องมือใหม่อีกด้วย จากปัญหาดังกล่าว โครงงานนี้จึงได้พัฒนาระบบปัญญาประดิษฐ์สำหรับระบุชนิดเครื่องมือทันตกรรมหัตถการเพื่อตรวจนับจำนวนด้วยวิธีการเรียนรู้เชิงลึก โดยเป็นการตรวจนับความครบถ้วนของอุปกรณ์ที่นำไปใช้ มีใช้วิธีการตรวจจับวัตถุ(Object Detection) ซึ่งการตรวจจับวัตถุช่วยให้สามารถตรวจจับอุปกรณ์ทันตกรรหัตถการทั้งหมดหลังจากการใช้งาน เพื่อเพิ่มประสิทธิภาพ ความแม่นยำ อีกทั้งสามารถตรวจนับเครื่องมือต่างๆได้พร้อมกันหลายๆภาพเพื่อช่วยลดเวลาและความล่าช้าในกระบวนการตรวจสอบและนับจำนวนเครื่องมือทั้งหมด รวมถึงข้อมูลจำนวนและชนิดของอุปกรณ์ สามารถส่งออกไปยังฐานข้อมูลเพื่อนำข้อมูลไปใช้งานต่อได้อีกด้วย

คณะวิศวกรรมศาสตร์
This research suggested natural hemp fiber-reinforced ropes (FRR) polymer usage to reinforce recycled aggregate square concrete columns that contain fired-clay solid brick aggregates in order to reduce the high costs associated with synthetic fiber-reinforced polymers (FRPs). A total of 24 square columns of concrete were fabricated to conduct this study. The samples were tested under a monotonic axial compression load. The variables of interest were the strength of unconfined concrete and the number of FRRlayers. According to the results, the strengthened specimens demonstrated an increased compressive strength and ductility. Notably, the specimens with the smallest unconfined strength demonstrated the largest improvement in compressive strength and ductility. Particularly, the compressive strength and strain were enhanced by up to 181% and 564%, respectively. In order to predict the ultimate confined compressive stress and strain, this study investigated a number of analytical stress–strain models. A comparison of experimental and theoretical findings deduced that only a limited number of strength models resulted in close predictions, whereas an even larger scatter was observed for strain prediction. Machine learning was employed by using neural networks to predict the compressive strength. A dataset comprising 142 specimens strengthened with hemp FRP was extracted from the literature. The neural network was trained on the extracted dataset, and its performance was evaluated for the experimental results of this study, which demonstrated a close agreement.

คณะอุตสาหกรรมอาหาร
This study aims to investigate the co-encapsulation technique of vitamin C and coenzyme Q10 within liposomes to enhance their stability and encapsulation efficiency and evaluate their antioxidant activity and release behavior under simulated gastrointestinal conditions. Liposomes were prepared using the High-Speed Homogenization Method, and their characteristics, including particle size, zeta potential, encapsulation efficiency, and antioxidant activity, were analyzed using DPPH, ABTS, and FRAP assays. The results demonstrated that co-encapsulation significantly improved the stability of vitamin C and coenzyme Q10 compared to single encapsulation. The liposomes exhibited high encapsulation efficiency and maintained strong antioxidant activity. The release profile under simulated gastrointestinal conditions also indicated a sustained and controlled release. These findings highlight the potential of the co-encapsulation technique in enhancing the efficacy of functional bioactive compounds, making it applicable to the food and nutraceutical industries.

คณะวิศวกรรมศาสตร์
Inventing robots for the TPA Robotics Competition Thailand Championship 2024, game “Rice Way, Thai Way to the International Way (HARVEST DAY)”