KMITL Innovation Expo 2025 Logo

การตรวจสอบรอยร้าวกำแพง โดยใช้ Image Processing Techniques

รายละเอียด

โครงการนี้มีเป้าหมายเพื่อ ตรวจจับและจำแนกประเภทของรอยร้าวบนผนัง โดยใช้ AI และการประมวลผลภาพ ผู้ใช้สามารถ อัปโหลดรูปภาพ และระบบจะ วิเคราะห์ประเภทและความรุนแรงของรอยร้าว โมเดลที่ใช้คือ ResNet-50 ซึ่งมีความแม่นยำ 70.59% การปรับแต่งข้อมูลและการเพิ่มข้อมูลช่วยให้การตรวจจับแม่นยำขึ้น เครื่องมือนี้ช่วย ป้องกันความเสียหายทางโครงสร้าง โดยให้คำแนะนำเบื้องต้นสำหรับการบำรุงรักษา

วัตถุประสงค์

รอยร้าวบนผนังอาจส่งผลต่อ ความปลอดภัยของอาคาร แต่การตรวจสอบยังต้องพึ่ง ผู้เชี่ยวชาญ โครงงานนี้จึงพัฒนา ระบบ AI เพื่อตรวจจับและจำแนก รอยร้าวอัตโนมัติ ผ่าน การประมวลผลภาพ ช่วยให้ ประเมินเบื้องต้นได้ง่าย ลดค่าใช้จ่าย และส่งเสริม การบำรุงรักษาเชิงป้องกัน

นวัตกรรมอื่น ๆ

ระบบอัตโนมัติสำหรับติดตามการเจริญเติบโตของจิ้งหรีดด้วยกล้องอินฟาเรด

คณะวิทยาศาสตร์

ระบบอัตโนมัติสำหรับติดตามการเจริญเติบโตของจิ้งหรีดด้วยกล้องอินฟาเรด

ในการเลี้ยงจิ้งหรีดเพื่อบริโภคเนื้อนั้น อัตราการเจริญเติบโต และระยะเวลาเจริญเติบโตของจิ้งหรีดเป็นข้อมูลสำคัญที่ใช้ในการระบุจำนวนจิ้งหรีดต่อพื้นที่เพาะเลี้ยงในแต่ละช่วงอายุ ดังนั้นผู้วิจัยจึงได้มีแนวคิดที่จะสร้างระบบสำหรับการติดตามอัตราการเจริญเติบโตของจิ้งหรีดในระบบปิดโดยใช้กล้องอินฟาเรดร่วมกับการประมวลผลภาพ (Image processing) ด้วยคอมพิวเตอร์เพื่อศึกษาการเจริญเติบโต ระบุบระยะเวลาการเจริญเติบโตของจิ้งหรีดในแต่ละช่วงอายุ เพื่อให้ได้องค์ความรู้ที่จะนำไปเผยแพร่ให้แก่เกษตรกรสำหรับปรับปรุงกระบวนการเลี้ยงให้มีประสิทธิ์ภาพสูงที่สุด

นวัตกรรมชุดโรงงานพร้อมเครื่องจักรเคลื่อนที่สำหรับแปรรูปผลไม้เขตร้อนในเขตพื้นที่จังหวัดฉะเชิงเทรา

คณะวิศวกรรมศาสตร์

นวัตกรรมชุดโรงงานพร้อมเครื่องจักรเคลื่อนที่สำหรับแปรรูปผลไม้เขตร้อนในเขตพื้นที่จังหวัดฉะเชิงเทรา

-

ระบบวินิจฉัยดีซ่านอัจฉริยะ

คณะวิศวกรรมศาสตร์

ระบบวินิจฉัยดีซ่านอัจฉริยะ

การตรวจวินิจฉัยโรคดีซ่าน ซึ่งเป็นภาวะที่พบได้ทั่วไปในทารกเนื่องจากระดับบิลิรูบินในเลือดที่สูงขึ้น มักต้องการการวินิจฉัยและการตรวจสอบอย่างรวดเร็วเพื่อป้องกันภาวะแทรกซ้อนร้ายแรง โดยเฉพาะในทารกแรกเกิด วิธีการวินิจฉัยแบบดั้งเดิมสามารถใช้เวลานานและอาจเกิดข้อผิดพลาดจากมนุษย์ได้ งานวิจัยนี้เสนอแนวทางในการตรวจวินิจฉัยโรคดีซ่านแบบเรียลไทม์โดยใช้เทคนิคการประมวลผลภาพขั้นสูงและอัลกอริทึมแมชชีนเลิร์นนิง โดยการวิเคราะห์ภาพที่ถ่ายในพื้นที่สี RGB จะมีการสกัดและประมวลผลค่าพิกเซลผ่านการปรับค่าเกณฑ์ของ Otsu และการดำเนินการทางสัณฐานวิทยาเพื่อตรวจจับรูปแบบสีที่บ่งบอกถึงโรคดีซ่าน จากนั้นตัวจำแนกจะถูกฝึกฝนเพื่อแยกแยะระหว่างภาวะปกติและภาวะดีซ่าน นำเสนอนวัตกรรมเครื่องมือวินิจฉัยที่แม่นยำและมีประสิทธิภาพ การทำงานแบบเรียลไทม์ทำให้ระบบนี้เหมาะสำหรับสถานพยาบาล โดยให้ข้อมูลเชิงลึกที่ทันเวลาแก่บุคลากรทางการแพทย์เพื่อปรับปรุงผลลัพธ์ของผู้ป่วย วิธีการที่เสนอนี้เป็นนวัตกรรมสำคัญในด้านการดูแลสุขภาพ โดยการรวมปัญญาประดิษฐ์และการถ่ายภาพทางการแพทย์เพื่อเพิ่มประสิทธิภาพในการตรวจวินิจฉัยและจัดการโรคดีซ่านได้เร็วขึ้น ลดการพึ่งพาการแทรกแซงแบบแมนนวล และปรับปรุงการให้บริการด้านสุขภาพโดยรวม