This project aims to develop an AI-powered system for detecting and classifying wall cracks using image processing. It identifies different crack types, assesses severity, and ensures accuracy across various image conditions. The goal is to support preventive maintenance by enabling early detection of structural issues, reducing repair costs, and improving safety.
รอยร้าวบนผนังอาจส่งผลต่อ ความปลอดภัยของอาคาร แต่การตรวจสอบยังต้องพึ่ง ผู้เชี่ยวชาญ โครงงานนี้จึงพัฒนา ระบบ AI เพื่อตรวจจับและจำแนก รอยร้าวอัตโนมัติ ผ่าน การประมวลผลภาพ ช่วยให้ ประเมินเบื้องต้นได้ง่าย ลดค่าใช้จ่าย และส่งเสริม การบำรุงรักษาเชิงป้องกัน
คณะวิทยาศาสตร์
Otitis Media is an infection of the middle ear that can occur in individuals of all ages. Diagnosis typically involves analyzing images taken with an otoscope by specialized physicians, which relies heavily on medical experience to expedite the process. This research introduces computer vision technology to assist in the preliminary diagnosis, aiding expert decision-making. By utilizing deep learning techniques and convolutional neural networks, specifically the YOLOv8 and Inception v3 architectures, the study aims to classify the disease and its five characteristics used by physicians: color, transparency, fluid, retraction, and perforation. Additionally, image segmentation and classification methods were employed to analyze and predict the types of Otitis Media, which are categorized into four types: Otitis Media with Effusion, Acute Otitis Media with Effusion, Perforation, and Normal. Experimental results indicate that the classification model performs moderately well in directly classifying Otitis Media, with an accuracy of 65.7%, a recall of 65.7%, and a precision of 67.6%. Moreover, the model provides the best results for classifying the perforation characteristic, with an accuracy of 91.8%, a recall of 91.8%, and a precision of 92.1%. In contrast, the classification model that incorporates image segmentation techniques achieved the best overall performance, with an mAP50-95 of 79.63%, a recall of 100%, and a precision of 99.8%. However, this model has not yet been tested for classifying the different types of Otitis Media.
คณะเทคโนโลยีการเกษตร
Durian is a crucial economic crop of Thailand and one of the most exported agricultural products in the world. However, producing high-quality durian requires maintaining the health of durian trees, ensuring they remain strong and disease-free to optimize productivity and minimize potential damage to both the tree and its fruit. Among the various diseases affecting durian, foliar diseases are among the most common and rapidly spreading, directly impacting tree growth and fruit quality. Therefore, monitoring and controlling leaf diseases is essential for preserving durian quality. This study aims to apply image analysis technology combined with artificial intelligence (AI) to classify diseases in durian leaves, enabling farmers to diagnose diseases independently without relying on experts. The classification includes three categories: healthy leaves (H), leaves infected with anthracnose (A), and leaves affected by algal spot (S). To develop the classification model, convolutional neural network (CNN) algorithms—ResNet-50, GoogleNet, and AlexNet—were employed. Experimental results indicate that the classification accuracy of ResNet-50, GoogleNet, and AlexNet is 93.57%, 93.95%, and 68.69%, respectively.
คณะเทคโนโลยีการเกษตร
-