This project aims to develop an AI-powered system for detecting and classifying wall cracks using image processing. It identifies different crack types, assesses severity, and ensures accuracy across various image conditions. The goal is to support preventive maintenance by enabling early detection of structural issues, reducing repair costs, and improving safety.
รอยร้าวบนผนังอาจส่งผลต่อ ความปลอดภัยของอาคาร แต่การตรวจสอบยังต้องพึ่ง ผู้เชี่ยวชาญ โครงงานนี้จึงพัฒนา ระบบ AI เพื่อตรวจจับและจำแนก รอยร้าวอัตโนมัติ ผ่าน การประมวลผลภาพ ช่วยให้ ประเมินเบื้องต้นได้ง่าย ลดค่าใช้จ่าย และส่งเสริม การบำรุงรักษาเชิงป้องกัน

คณะอุตสาหกรรมอาหาร
Spent coffee grounds (SCG) are a byproduct of the coffee brewing process, and their quantity continues to increase due to the growing global coffee consumption. SCG contain beneficial compounds such as polysaccharides, dietary fibers, and antioxidants, which can be utilized in various applications, including prebiotic extraction. This study focuses on extracting prebiotics from SCG using acid hydrolysis and enzymatic hydrolysis methods to evaluate their potential in promoting the growth of beneficial gut microorganisms. The expected results of this research include adding value to coffee industry waste, reducing organic waste, and providing a sustainable approach to developing prebiotic products for use in the food and health industries. Furthermore, this study aligns with sustainable resource utilization and environmentally friendly practices.

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
The Project Urban House is an initiative focused on developing and designing urban housing solutions that address the growing demand for city living. The project emphasizes efficient space utilization, sustainability, and designs that cater to modern urban lifestyles. Key considerations include the use of eco-friendly materials, the integration of green spaces, and the implementation of smart home technologies to enhance residents' quality of life.

คณะวิทยาศาสตร์
With the urgent need for rapid screening of Aflatoxin B1 (AFB1) due to its association with increased liver cirrhosis and hepatocellular carcinoma cases from contaminated agricultural foods, we propose a novel electrochemical aptasensor. This aptasensor is based on trimetallic nanoparticles AuPt-Ru supported by reduced graphene oxide (AuPt-Ru/RGO) modified on a low-cost and disposable goldleaf electrode (GLEAuPt-Ru/RGO) for detection of AFB1. The trimetallic nanoparticle AuPt-Ru was synthesized using an ultrasonic-driven chemical reduction method. The synthesized AuPt-Ru exhibited a waxberry-like appearance, with AuPt core-shell structure and ruthenium dispersed over the particles. The average particle size was 57.35 ± 8.24 nm. The AuPt-Ru was integrated into RGO sheets (inner diameter of 0.5 to 1.6 µm) in order to enhance electron transfer efficiency and increase the specific immobilizing surface area of the thiol-5’-terminated modified aptamer (Apt) to target AFB1. With a large electrochemical surface area and low electrochemical impedance, GLEAuPt-Ru/RGO displays ultra-high sensitivity for AFB1 detection. Differential pulse voltammetry (DPV) measurements revealed a linear range for AFB1 detection range from 0.3 to 30.0 pg mL-1 (R2 = 0.9972), with a limit of detection (LOD, S/N = 3) and a limit of quantification (LOQ, S/N = 10) of 0.009 pg mL-1 and 0.031 pg mL-1, respectively. The developed aptasensor also demonstrated excellent accuracy in real agricultural products, including dried red chili, garlic, peanut, pepper, and Thai jasmine rice, achieving recovery rates between 94.6 and 107.9%. The fabricated aptamer-based GLEAuPt-Ru/RGO performance is comparable to that of a modified commercial electrode, which has great potential application prospects for detecting AFB1 in agricultural products.