KMITL Innovation Expo 2025 Logo

การกระตุ้นของสมองในการควบคุมการเคลื่อนไหวของแขนส่วนบนด้วยระดับแรงที่ต่างกัน

การกระตุ้นของสมองในการควบคุมการเคลื่อนไหวของแขนส่วนบนด้วยระดับแรงที่ต่างกัน

รายละเอียด

การควบคุมการเคลื่อนไหว (Motor control) เป็นกระบวนการสำคัญสำหรับการหดตัวของกล้ามเนื้อ ซึ่งเริ่มต้นจากกระแสประสาทที่ควบคุมโดยคอร์เทกซ์สั่งการ (motor cortex) กระบวนการนี้มีความจำเป็นอย่างยิ่งในการทำกิจวัตรประจำวัน (Activities of Daily Living, ADLs) ดังนั้น หากการสื่อสารระหว่างสมองและกล้ามเนื้อเกิดความผิดปกติ เช่น ในผู้ที่มีภาวะหรือโรคเรื้อรังบางชนิด ก็อาจส่งผลให้การเคลื่อนไหวของร่างกายและความสามารถในการทำกิจวัตรประจำวันลดลงได้ การประเมินปฏิสัมพันธ์ระหว่างการทำงานของสมองและการควบคุมการเคลื่อนไหวจึงมีความสำคัญต่อการวินิจฉัยและการรักษาความผิดปกติด้านการควบคุมการเคลื่อนไหว อีกทั้งยังเป็นประโยชน์ต่อการพัฒนาเทคโนโลยีเชื่อมต่อสมองมนุษย์กับคอมพิวเตอร์ (Brain-Computer Interfaces, BCIs) วัตถุประสงค์ของการศึกษานี้คือการตรวจสอบการกระตุ้นสมอง (brain activation) ระหว่างการทำงานควบคุมการเคลื่อนไหวของแขนส่วนบน (upper extremity motor control tasks) ในการปรับระดับแรงผลักที่แตกต่างกัน และสมองส่วนต่าง ๆ อีกทั้งยังพัฒนาวิธีการตรวจวัดเพื่อประเมินการควบคุมการเคลื่อนไหวและการกระตุ้นสมอง โดยใช้แขนกล (robotic arm) ในการกำหนดทิศทางและระดับแรงสำหรับการควบคุมการเคลื่อนไหวของแขนส่วนบน กลุ่มตัวอย่างประกอบด้วยผู้ใหญ่วัยหนุ่มสาวสุขภาพดีจำนวน 18 คน ได้ทำการทดลองการควบคุมการเคลื่อนไหวของแขนส่วนบนพร้อมกับบันทึกสัญญาณทางโลหิตวิทยา (hemodynamic response) โดยใช้เครื่อง Functional near Infrared spectroscopy (fNIRs) และแขนกล (Robotic arm) เพื่อประเมินการกระตุ้นของสมองและการปรับระดับแรงผลัก รวมถึงการควบคุมการเคลื่อนไหวของแขนส่วนบน ในการทดสอบมีการเคลื่อนไหวสองแบบ ได้แก่ การเคลื่อนไหวอยู่กับที่ (static) และการเคลื่อนไหวแบบไดนามิก (dynamic) ซึ่งเคลื่อนที่ไปและกลับตามเส้นทางที่กำหนด รวมถึงใช้ระดับแรงสามระดับ คือ 4, 12 และ 20 นิวตัน (N) ที่คัดเลือกจากช่วงแรงในกิจวัตรประจำวัน เพื่อควบคุมการเคลื่อนไหวของแขนส่วนบนโดยการปรับแรง และวัดสัญญาณทางโลหิตวิทยาในที่บริเวณสมองที่สนใจ ได้แก่ คอร์เทกซ์สั่งการปฐมภูมิ (primary motor cortex, M1) คอร์เทกซ์พรีมอเตอร์ (premotor cortex, PMC) เขตสั่งการเสริม (supplementary motor area, SMA) และคอร์เทกซ์กลีบหน้าผากส่วนหน้า (prefrontal cortex, PFC) จากการวิเคราะห์ความแปรปรวนแบบสองทางสำหรับการวัดซ้ำ (two-way repeated measures ANOVA) ร่วมกับการปรับแก้ค่า Bonferroni (p < 0.00625) ในทุกบริเวณสมองที่วัด ไม่พบอิทธิพลร่วมระหว่างระดับแรงและประเภทการเคลื่อนไหวต่อระดับเฮโมโกลบินที่มีออกซิเจน (oxygenated hemoglobin, HbO) อย่างมีนัยสำคัญ อย่างไรก็ตาม พบว่าการเคลื่อนไหวอยู่กับที่และไดนามิก ส่งผลต่อการกระตุ้นสมองอย่างมีนัยสำคัญในคอร์เทกซ์กลีบหน้าผากส่วนหน้าทั้งด้านตรงข้าม (contralateral, cPFC) และด้านเดียวกัน (ipsilateral, iPFC) นอกจากนี้ ยังพบว่าระดับแรงมีผลต่อการกระตุ้นสมองอย่างมีนัยสำคัญในบริเวณคอร์เทกซ์สั่งการปฐมภูมิด้านตรงข้าม (cM1) คอร์เทกซ์กลีบหน้าผากส่วนหน้าด้านเดียวกัน (iPFC) และคอร์เท็กซ์พรีมอเตอร์ (PMC) อีกด้วย

วัตถุประสงค์

This observational study aims to investigate the relationship between brain activation in specific regions and various motor tasks involving upper extremity movement with force control. Utilizing fNIRs, the research will monitor hemodynamic changes in four key brain areas: the prefrontal cortex (PFC), premotor cortex (PMC), supplementary motor area (SMA), and primary motor cortex (M1) during task performance. The primary population for this investigation consists of healthy young adults, allowing for a clearer understanding of how force control affects brain activation. The scope of the study includes assessing brain activation measured by fNIRs during upper extremity motor and force control tasks, as well as examining how upper extremity movements and force control influence brain activation.

นวัตกรรมอื่น ๆ

สมการฝุ่นพิษ

คณะวิทยาศาสตร์

สมการฝุ่นพิษ

ปัญหามลพิษทางอากาศ โดยเฉพาะฝุ่นละอองขนาดเล็ก PM2.5 เป็นปัญหาสำคัญที่ส่งผลกระทบต่อสุขภาพและสิ่งแวดล้อมในกรุงเทพมหานคร โครงการนี้มีวัตถุประสงค์เพื่อวิเคราะห์และระบุปัจจัยที่มีอิทธิพลต่อระดับของ PM2.5 มากที่สุด โดยใช้ข้อมูลคุณภาพอากาศ สภาพอากาศ และปัจจัยแวดล้อมอื่น ๆ ที่เกี่ยวข้อง เพื่อตรวจสอบว่าปัจจัยใด เช่น อุณหภูมิ ความชื้น ความเร็วลม หรือมลพิษจากแหล่งอื่น มีผลต่อความผันผวนของ PM2.5 ผลการศึกษานี้จะช่วยให้สามารถระบุปัจจัยสำคัญที่ส่งผลต่อปริมาณฝุ่น PM2.5 ได้อย่างเป็นระบบ ซึ่งสามารถนำไปใช้เป็นข้อมูลพื้นฐานสำหรับหน่วยงานภาครัฐ นักวิจัย และประชาชนทั่วไปในการวางแผนรับมือและลดผลกระทบจากมลพิษทางอากาศ นอกจากนี้ ผลลัพธ์ที่ได้ยังสามารถนำไปใช้สนับสนุนการตัดสินใจในการกำหนดนโยบายและมาตรการต่าง ๆ เพื่อปรับปรุงคุณภาพอากาศและสุขภาพของประชาชนในระยะยาว

มิเตอร์ตรวจปรอทแบบพกพา

คณะวิทยาศาสตร์

มิเตอร์ตรวจปรอทแบบพกพา

งานวิจัยนี้ เสนอการสร้างอุปกรณ์ต้นแบบ "มิเตอร์ตรวจปรอทแบบพกพา" (Handheld Mercury Meter) โดยใช้ทรานซิสเตอร์สนามไฟฟ้าชนิดไวต่อไอออนเป็นแพลตฟอร์มในการตรวจวัดตามหลักการโพเทนชิโอเมตรี ได้สังเคราะห์เยื่อเลือกผ่านที่มีความจำเพาะเจาะจงกับปรอท (II) พบว่ามิเตอร์ที่พัฒนาขึ้น ตอบสนองต่อปรอทได้ดี มีความแม่นและความเที่ยงสูง (ค่าร้อยละของการวิเคราะห์คืนกลับอยู่ในช่วง 92.55 – 109.32 และค่าร้อยละส่วนเบี่ยงเบนมาตรฐานสัมพัทธ์เท่ากับ 2.38) เมื่อนำไปประยุกต์ใช้กับตัวอย่างน้ำและเครื่องสำอางที่มีการเติมสารมาตรฐานปรอทลงไป พบว่าผลการวิเคราะห์ไม่แตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั่นร้อยละ 95 เมื่อเปรียบเทียบกับการวิเคราะห์ด้วยวิธีเชิงเครื่องมือ (ICP-OES) ซึ่งเป็นเครื่องขนาดใหญ่ นำไปใช้กับงานภาคสนามไม่ได้

Dream High ผลิตภัณฑ์จากไมซีเลียม

คณะบริหารธุรกิจ

Dream High ผลิตภัณฑ์จากไมซีเลียม

ในโลกที่ให้ความสําคัญกับความยั่งยืนและลดผลกระทบต่อสิ่งแวดล้อมมากขึ้น DreamHigh เป็นผู้บุกเบิกแนวทางที่เป็นนวัตกรรมในการแก้ปัญหาบรรจุภัณฑ์โดยใช้ไมซีเลียม ซึ่งเป็นวัสดุธรรมชาติที่ย่อยสลายได้ทางชีวภาพ และทดแทนได้จากเชื้อรา ภารกิจของเราคือการปฏิวัติอุตสาหกรรมบรรจุภัณฑ์โดยนําเสนอทางเลือกที่เป็นมิตรกับสิ่งแวดล้อมที่ไม่เพียงแต่ลดขยะเท่านั้น แต่ยังสอดคล้องกับความพยายามระดับโลกในการต่อสู้กับการเปลี่ยนแปลงสภาพภูมิอากาศอีกด้วย บรรจุภัณฑ์ไมซีเลียมเสนอทางเลือกที่น่าสนใจสําหรับบรรจุภัณฑ์พลาสติกและสไตโรโฟมแบบดั้งเดิม ซึ่งมีส่วนสําคัญต่อมลภาวะต่อสิ่งแวดล้อม สามารถย่อยสลายได้ทางชีวภาพอย่างสมบูรณ์ ย่อยสลายได้ และสามารถย่อยสลายได้ในสภาพแวดล้อมทางธรรมชาติภายในไม่กี่สัปดาห์ โดยไม่ทิ้งสารพิษตกค้างไว้ข้างหลัง นอกจากนี้ ผลิตภัณฑ์ที่ใช้ไมซีเลียมมีน้ําหนักเบา ทนทาน และปรับแต่งได้ ทําให้เหมาะสําหรับการใช้งานที่หลากหลาย ตั้งแต่บรรจุภัณฑ์สินค้าอุปโภคบริโภคไปจนถึงวัสดุป้องกันการจัดส่ง แผนธุรกิจของ DreamHigh ได้สรุปกระบวนการผลิตที่ปรับขนาดได้โดยใช้เทคนิคการเพาะปลูกไมซีเลียมขั้นสูงและความร่วมมือกับภาคเกษตรกรรมในท้องถิ่นเพื่อใช้ของเสียทางการเกษตรเป็นวัตถุดิบหลัก สิ่งนี้ไม่เพียงแต่ช่วยให้มั่นใจถึงประสิทธิภาพด้านต้นทุนเท่านั้น แต่ยังสนับสนุนเศรษฐกิจหมุนเวียนด้วยการนําของเสียที่จะถูกทิ้งไปใช้ประโยชน์ใหม่