KMITL Innovation Expo 2025 Logo

THE BRAIN ACTIVATION ON UPPER EXTREMITY MOTOR CONTROL TASKS IN DIFFERENT FORCES LEVELS

THE BRAIN ACTIVATION ON UPPER EXTREMITY MOTOR CONTROL TASKS IN DIFFERENT FORCES LEVELS

Abstract

Motor control is a critical process for muscle contraction, which is initiated by nerve impulses governed by the motor cortex. This process is vital for performing activities of daily living (ADLs). Consequently, a disruption in communication between the brain and muscles, as seen in various chronic conditions and diseases, can impair bodily movement and ADLs. Evaluating the interaction between brain function and motor control is significant for the diagnosis and treatment of motor control disorders; moreover, it can contribute to the development of brain-computer interfaces (BCIs). The purpose of this study is to investigate brain activation in designed upper extremity motor control tasks in regulating the pushing force in different brain regions; and develop investigation methods to assess motor control tasks and brain activation using a robotic arm to guide upper extremity force and motor control. Eighteen healthy young adults were asked to perform upper extremity motor control tasks and recorded the hemodynamic signals. Functional Near-Infrared Spectroscopy (fNIRs) and robotic arms were used to assess brain activation and the regulation of pushing force and extremity motor control. Two types of motion, static and dynamic, move along a designated trajectory in both forward and backward directions, and three different force levels selected from a range of ADLs, including 4, 12, and 20 N, were used as force-regulating upper extremity motor control tasks. The hemodynamic responses were measured in specific regions of interest, namely the primary motor cortex (M1), premotor cortex (PMC), supplementary motor area (SMA), and prefrontal cortex (PFC). Utilizing a two-way repeated measures ANOVA with Bonferroni correction (p < 0.00625) across all regions, we observed no significant interaction effect between force levels and movement types on oxygenated hemoglobin (HbO) levels. However, in both contralateral (c) and ipsilateral (i) PFC, movement type—static versus dynamic—significantly affected brain activation. Additionally, cM1, iPFC, and PMC showed a significant effect of force level on brain activation.

Objective

This observational study aims to investigate the relationship between brain activation in specific regions and various motor tasks involving upper extremity movement with force control. Utilizing fNIRs, the research will monitor hemodynamic changes in four key brain areas: the prefrontal cortex (PFC), premotor cortex (PMC), supplementary motor area (SMA), and primary motor cortex (M1) during task performance. The primary population for this investigation consists of healthy young adults, allowing for a clearer understanding of how force control affects brain activation. The scope of the study includes assessing brain activation measured by fNIRs during upper extremity motor and force control tasks, as well as examining how upper extremity movements and force control influence brain activation.

Other Innovations

The study of the chemical and physical properties of chickpea burgers and hybrid burgers with chickpea and pork using the sous-vide cooking method.

คณะอุตสาหกรรมอาหาร

The study of the chemical and physical properties of chickpea burgers and hybrid burgers with chickpea and pork using the sous-vide cooking method.

The consumption of plant-based products has been gaining popularity as consumers become more health-conscious and aware of environmental impacts. The food industry has been developing meat analogs with properties similar to conventional meat. This study investigates the chemical and physical properties of chickpea-based meat analog burgers and hybrid burgers containing both chickpeas and pork, using the sous-vide cooking method. This technique helps maintain food quality in terms of texture, moisture retention, and nutritional value. The experiment examined various properties of both types of burgers, including cooking loss, water holding capacity, shear force, pH value, and color analysis. Additionally, sensory evaluation was conducted to assess taste, texture, and overall consumer preference. The findings will provide insights into the optimal sous-vide conditions for producing plant-based and hybrid burgers with desirable quality characteristics that meet the needs of health-conscious consumers. This study serves as a valuable guideline for the food industry in developing high-nutritional-value alternative protein products while reducing meat consumption. By incorporating plant-based ingredients, it helps minimize environmental impact and promotes sustainability in food production. The research is significant in both food science and the development of healthier, competitive food products for the future market.

Read more
Serene Arbor Park

คณะเทคโนโลยีการเกษตร

Serene Arbor Park

The design of a 50-rai public park in the Lat Krabang district of Bangkok aims to provide a recreational space for urban residents in Lat Krabang and nearby areas. The focus is on user groups such as students, university students, and working individuals, incorporating the concept of Universal Design to ensure that everyone in society can use the space equally. However, there is still an emphasis on creating active recreational areas to meet the sports and exercise needs of students, university students, and working individuals. The design of the Lat Krabang area, which is a low-lying region resembling a basin, includes features for water retention, water management, and water treatment for use within the park. The area will focus on exercise, sports, running, walking, relaxation, and educational garden spaces.

Read more
Investigation variable star classification through light curve analysis using machine learning approach

คณะวิทยาศาสตร์

Investigation variable star classification through light curve analysis using machine learning approach

With the development of space technology, wide-field sky surveys using telescopes have expanded the range of new data available for time-domain astronomical research. Traditional data analysis methods can no longer respond quickly and accurately enough to the growing volume of data. Thus, classifying time-series data, such as light curves, has become a significant challenge in the era of big data. In modern times, analyzing light curves has become essential for using machine learning techniques to handle and filter through massive amounts of data. Machine learning algorithms can be divided into two categories: shallow learning and deep learning. Numerous researchers have proposed and developed a variety of algorithms for light curve classification. In this study, we experimented with Support Vector Machine (SVM) and XGBoost, which are shallow machine learning algorithms, as well as 1D-CNN and Long Short-Term Memory (LSTM), which are deep learning algorithms, which are branches of deep machine learning, to classify variable stars. The training and testing data used in this study were from the Optical Gravitational Lensing Experiment-III (OGLE-III), consisting of variable star data from the Large Magellanic Cloud (LMC), categorized into five main classes: Classical Cepheids, δ Scutis, eclipsing binaries, RR Lyrae stars, and Long-period variables. The results demonstrate the performance analysis of each machine learning algorithm type applied to light curve data, while also highlighting the accuracy and statistical metrics of the algorithms used in the experiments.

Read more