KMITL Innovation Expo 2025 Logo

THE BRAIN ACTIVATION ON UPPER EXTREMITY MOTOR CONTROL TASKS IN DIFFERENT FORCES LEVELS

THE BRAIN ACTIVATION ON UPPER EXTREMITY MOTOR CONTROL TASKS IN DIFFERENT FORCES LEVELS

Abstract

Motor control is a critical process for muscle contraction, which is initiated by nerve impulses governed by the motor cortex. This process is vital for performing activities of daily living (ADLs). Consequently, a disruption in communication between the brain and muscles, as seen in various chronic conditions and diseases, can impair bodily movement and ADLs. Evaluating the interaction between brain function and motor control is significant for the diagnosis and treatment of motor control disorders; moreover, it can contribute to the development of brain-computer interfaces (BCIs). The purpose of this study is to investigate brain activation in designed upper extremity motor control tasks in regulating the pushing force in different brain regions; and develop investigation methods to assess motor control tasks and brain activation using a robotic arm to guide upper extremity force and motor control. Eighteen healthy young adults were asked to perform upper extremity motor control tasks and recorded the hemodynamic signals. Functional Near-Infrared Spectroscopy (fNIRs) and robotic arms were used to assess brain activation and the regulation of pushing force and extremity motor control. Two types of motion, static and dynamic, move along a designated trajectory in both forward and backward directions, and three different force levels selected from a range of ADLs, including 4, 12, and 20 N, were used as force-regulating upper extremity motor control tasks. The hemodynamic responses were measured in specific regions of interest, namely the primary motor cortex (M1), premotor cortex (PMC), supplementary motor area (SMA), and prefrontal cortex (PFC). Utilizing a two-way repeated measures ANOVA with Bonferroni correction (p < 0.00625) across all regions, we observed no significant interaction effect between force levels and movement types on oxygenated hemoglobin (HbO) levels. However, in both contralateral (c) and ipsilateral (i) PFC, movement type—static versus dynamic—significantly affected brain activation. Additionally, cM1, iPFC, and PMC showed a significant effect of force level on brain activation.

Objective

This observational study aims to investigate the relationship between brain activation in specific regions and various motor tasks involving upper extremity movement with force control. Utilizing fNIRs, the research will monitor hemodynamic changes in four key brain areas: the prefrontal cortex (PFC), premotor cortex (PMC), supplementary motor area (SMA), and primary motor cortex (M1) during task performance. The primary population for this investigation consists of healthy young adults, allowing for a clearer understanding of how force control affects brain activation. The scope of the study includes assessing brain activation measured by fNIRs during upper extremity motor and force control tasks, as well as examining how upper extremity movements and force control influence brain activation.

Other Innovations

Handheld Mercury Meter

คณะวิทยาศาสตร์

Handheld Mercury Meter

This work presents the fabrication of the handheld meter for potentiometric detection of Hg (II). The meter was constructed based on using an ion-sensitive field-effect transistor (ISFET) platform. The developed meter provides high accuracy and precision (%Recovery was in the range of 92.55 - 109.32 and %RSD was 2.38). It was applied to the analysis of cosmetic samples. The results by the developed electrode were not significantly different at a 95% confidence level compared to the results by using ICP-OES.

Read more
Vision-Based Spacecraft Pose Estimation

วิทยาลัยอุตสาหกรรมการบินนานาชาติ

Vision-Based Spacecraft Pose Estimation

The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.

Read more
Lumina Rosa

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Lumina Rosa

This conceptual model, inspired by the Rose Window in Gothic architecture, embodies intricate geometric patterns that reflect divine harmony and balance. Its symmetrical structure and the interplay of light passing through stained glass create a sense of movement, enhancing the sacred and mystical atmosphere. The composition evokes a celestial presence, like a window to heaven.

Read more