KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

THE BRAIN ACTIVATION ON UPPER EXTREMITY MOTOR CONTROL TASKS IN DIFFERENT FORCES LEVELS

THE BRAIN ACTIVATION ON UPPER EXTREMITY MOTOR CONTROL TASKS IN DIFFERENT FORCES LEVELS

Abstract

Motor control is a critical process for muscle contraction, which is initiated by nerve impulses governed by the motor cortex. This process is vital for performing activities of daily living (ADLs). Consequently, a disruption in communication between the brain and muscles, as seen in various chronic conditions and diseases, can impair bodily movement and ADLs. Evaluating the interaction between brain function and motor control is significant for the diagnosis and treatment of motor control disorders; moreover, it can contribute to the development of brain-computer interfaces (BCIs). The purpose of this study is to investigate brain activation in designed upper extremity motor control tasks in regulating the pushing force in different brain regions; and develop investigation methods to assess motor control tasks and brain activation using a robotic arm to guide upper extremity force and motor control. Eighteen healthy young adults were asked to perform upper extremity motor control tasks and recorded the hemodynamic signals. Functional Near-Infrared Spectroscopy (fNIRs) and robotic arms were used to assess brain activation and the regulation of pushing force and extremity motor control. Two types of motion, static and dynamic, move along a designated trajectory in both forward and backward directions, and three different force levels selected from a range of ADLs, including 4, 12, and 20 N, were used as force-regulating upper extremity motor control tasks. The hemodynamic responses were measured in specific regions of interest, namely the primary motor cortex (M1), premotor cortex (PMC), supplementary motor area (SMA), and prefrontal cortex (PFC). Utilizing a two-way repeated measures ANOVA with Bonferroni correction (p < 0.00625) across all regions, we observed no significant interaction effect between force levels and movement types on oxygenated hemoglobin (HbO) levels. However, in both contralateral (c) and ipsilateral (i) PFC, movement type—static versus dynamic—significantly affected brain activation. Additionally, cM1, iPFC, and PMC showed a significant effect of force level on brain activation.

Objective

This observational study aims to investigate the relationship between brain activation in specific regions and various motor tasks involving upper extremity movement with force control. Utilizing fNIRs, the research will monitor hemodynamic changes in four key brain areas: the prefrontal cortex (PFC), premotor cortex (PMC), supplementary motor area (SMA), and primary motor cortex (M1) during task performance. The primary population for this investigation consists of healthy young adults, allowing for a clearer understanding of how force control affects brain activation. The scope of the study includes assessing brain activation measured by fNIRs during upper extremity motor and force control tasks, as well as examining how upper extremity movements and force control influence brain activation.

Other Innovations

Effects of Different Salinity Levels on Survival Rate and Growth Performance of Golden Apple Snail (Pomacea canaliculata) for Brackish Water Aquaculture Development

คณะเทคโนโลยีการเกษตร

Effects of Different Salinity Levels on Survival Rate and Growth Performance of Golden Apple Snail (Pomacea canaliculata) for Brackish Water Aquaculture Development

This study aimed to investigate the effects of different salinity levels on survival rate and growth performance of golden apple snail (Pomacea canaliculata). The experiment was conducted at salinity levels of 0, 5, 10, and 15 ppt, with four replicates each, over an 8-week period. The results showed that golden apple snails reared at 5-10 ppt exhibited survival rates and growth performance not significantly different (p>0.05) from those in the freshwater control group (0 ppt). These findings suggest the potential for developing golden apple snail culture in brackish water systems and the possibility of integration with other brackish water species in polyculture systems.

Read more
Process development of healthy snack products from germinated brown rice flour and banana flour using the extrusion process

คณะอุตสาหกรรมอาหาร

Process development of healthy snack products from germinated brown rice flour and banana flour using the extrusion process

This study aimed to develop a formula and production process for snacks made from germinated brown rice flour and banana flour using the extrusion process. The results indicated that both germinated brown rice flour and banana flour could be effectively used as the main raw materials for snack production via extrusion. The proportion of flour in the formula and production conditions, such as moisture content of the raw materials, barrel temperature, and screw speed, significantly influenced the nutritional value, bioactive compound levels, and antioxidant activity of the final products.

Read more
PROBIOGENOMIC ASESSMENT OF THE ABILITY OF THE POTENTAIL PROBIOTIC ENTEROCOCCUS LACTIS RRS4 ISOLATED FROM RAPHANUS SATIVUS LINN TO PROTECT VANCOMYCIN RESISTANT ENTEROCOCCUS

คณะวิทยาศาสตร์

PROBIOGENOMIC ASESSMENT OF THE ABILITY OF THE POTENTAIL PROBIOTIC ENTEROCOCCUS LACTIS RRS4 ISOLATED FROM RAPHANUS SATIVUS LINN TO PROTECT VANCOMYCIN RESISTANT ENTEROCOCCUS

The species Enterococcus lactis is closely related to E. faecium and is known for its beneficial and probiotic effects. In this study, strain RRS4 was isolated from Raphanus sativus Linn. and identified based on both phenotypic and genotypic characteristics. Strain RRS4 exhibited cell viability in environments with 2-8% NaCl, pH ranging from 4 to 9, and temperatures between 4°C and 45°C. Through comprehensive genomic analysis, strain RRS4 was confirmed to be E. lactis. E. lactis RRS4 demonstrated inhibitory effects against Vancomycin-resistant E. faecalis JCM 5803. Safety assessments via in silico methods, including KEGG annotation, indicated the absence of virulent and undesirable genes in E. lactis RRS4. VirulenceFinder analysis aligned virulence-related genes with those from three strains of E. lactis and four strains of E. faecium. While antibiotic resistance genes were found to be conserved, they did not correlate with key pathogenicity traits. Furthermore, safety evaluations highlighted that E. lactis RRS4 is generally safe, despite the presence of genes associated with antibiotic resistance. Lastly, we propose guidelines for assessing the safety of microbial strains using whole-genome analysis. These findings represent advancements in probiotic research.

Read more