Motor control is a critical process for muscle contraction, which is initiated by nerve impulses governed by the motor cortex. This process is vital for performing activities of daily living (ADLs). Consequently, a disruption in communication between the brain and muscles, as seen in various chronic conditions and diseases, can impair bodily movement and ADLs. Evaluating the interaction between brain function and motor control is significant for the diagnosis and treatment of motor control disorders; moreover, it can contribute to the development of brain-computer interfaces (BCIs). The purpose of this study is to investigate brain activation in designed upper extremity motor control tasks in regulating the pushing force in different brain regions; and develop investigation methods to assess motor control tasks and brain activation using a robotic arm to guide upper extremity force and motor control. Eighteen healthy young adults were asked to perform upper extremity motor control tasks and recorded the hemodynamic signals. Functional Near-Infrared Spectroscopy (fNIRs) and robotic arms were used to assess brain activation and the regulation of pushing force and extremity motor control. Two types of motion, static and dynamic, move along a designated trajectory in both forward and backward directions, and three different force levels selected from a range of ADLs, including 4, 12, and 20 N, were used as force-regulating upper extremity motor control tasks. The hemodynamic responses were measured in specific regions of interest, namely the primary motor cortex (M1), premotor cortex (PMC), supplementary motor area (SMA), and prefrontal cortex (PFC). Utilizing a two-way repeated measures ANOVA with Bonferroni correction (p < 0.00625) across all regions, we observed no significant interaction effect between force levels and movement types on oxygenated hemoglobin (HbO) levels. However, in both contralateral (c) and ipsilateral (i) PFC, movement type—static versus dynamic—significantly affected brain activation. Additionally, cM1, iPFC, and PMC showed a significant effect of force level on brain activation.
This observational study aims to investigate the relationship between brain activation in specific regions and various motor tasks involving upper extremity movement with force control. Utilizing fNIRs, the research will monitor hemodynamic changes in four key brain areas: the prefrontal cortex (PFC), premotor cortex (PMC), supplementary motor area (SMA), and primary motor cortex (M1) during task performance. The primary population for this investigation consists of healthy young adults, allowing for a clearer understanding of how force control affects brain activation. The scope of the study includes assessing brain activation measured by fNIRs during upper extremity motor and force control tasks, as well as examining how upper extremity movements and force control influence brain activation.
คณะเทคโนโลยีการเกษตร
Soil is home to a diverse array of living organisms that interact within a complex food web, facilitating energy and nutrient cycling essential for sustaining life above ground. Among these organisms, soil microbes play a crucial role in supporting plant growth. Beneficial microorganisms enhance nutrient availability, improve soil structure by increasing porosity, and strengthen plant resistance to diseases. Conversely, harmful microorganisms, such as plant pathogens, can hinder plant growth and reduce crop yields when present in high concentrations. Neutral microorganisms, which naturally inhabit the soil, contribute to the soil ecosystem without directly impacting plants. A single teaspoon of soil contains over a billion microorganisms, yet only about 1% of them can be cultured in laboratory conditions. This highlights soil as one of the richest reservoirs of microbial diversity on Earth.
คณะเทคโนโลยีการเกษตร
Rice is a salt-sensitive crop. The objective of this study was to evaluate the effect of salinity at flowering stage on physiological traits and yield of landrace rice. The experiment design was 4*10 Factorial in RCBD with 4 replications. Factor A was four salinity levels: control, 6, 12 and 16 dS/m; Factor B was 10 rice varieties. Data were collected on physiological traits and grain yield. The results showed that increasing salinity level decreased rice yield. The highest yield reduction was found when the rice received salt stress at 16 dS/m. In addition, rice varieties showed different yield performance when exposed to salt stress. In this found that Hom Yai variety had the lowest yield reduction when grown at 16 dS/m salinity level and did not differ from salt tolerant check variety.
คณะเทคโนโลยีสารสนเทศ
This report is part of applying the knowledge gained from studying machine learning models and methods for developing a predictive model to identify customers likely to cancel their credit card services with a bank. The project was carried out during an internship at a financial institution, where the creator developed a model to predict customers likely to churn from their credit card services using real customer data through the organization's system. The focus was on building a model that can accurately predict customer churn by selecting features that are appropriate for the prediction model and the unique characteristics of the credit card industry data to ensure the highest possible accuracy and efficiency. This report also covers the integration of the model into the development of a website, which allows related departments to conveniently use the prediction model. Users can upload data for prediction and receive model results instantly. In addition, a dashboard has been created to present insights from the model's predictions, such as identifying high-risk customers likely to cancel services, as well as other important analytical information for strategic decision-making. This will help support more efficient marketing planning and customer retention efforts within the organization.