ระบบสร้างภาษามือไทยเชิงกำเนิดมีเป้าหมายในการพัฒนาแพลตฟอร์ม การสร้างแบบจำลอง 3 มิติและแอนิเมชัน ที่สามารถแปลง ประโยคภาษาไทยเป็นท่าทางภาษามือไทย (TSL) ที่ถูกต้องและเป็นธรรมชาติ โครงการนี้ช่วยเสริมสร้างการสื่อสารสำหรับ ชุมชนผู้บกพร่องทางการได้ยินในประเทศไทย โดยใช้แนวทางที่อิงกับ แลนมาร์ก (Landmark-Based Approach) ผ่านการใช้ Vector Quantized Variational Autoencoder (VQVAE) และ Large Language Model (LLM) ในการสร้างภาษามือ ระบบเริ่มต้นด้วยการ ฝึกโมเดล VQVAE โดยใช้ข้อมูลแลนมาร์กที่สกัดจากวิดีโอภาษามือ เพื่อให้โมเดลเรียนรู้ การแทนค่าแบบแฝง (Latent Representations) ของท่าทางภาษามือไทย หลังจากนั้น โมเดลที่ฝึกแล้วจะถูกใช้เพื่อ สร้างลำดับแลนมาร์กของท่าทางเพิ่มเติม ซึ่งช่วยขยายชุดข้อมูลฝึกโดยอ้างอิงจาก BigSign ThaiPBS Dataset เมื่อชุดข้อมูลได้รับการขยายแล้ว ระบบจะทำการ ฝึก LLM เพื่อสร้างลำดับแลนมาร์กที่ถูกต้องจากข้อความภาษาไทย โดยลำดับแลนมาร์กที่ได้จะถูกนำไปใช้ สร้างแอนิเมชันของโมเดล 3 มิติใน Blender เพื่อให้ได้ท่าทางภาษามือที่ลื่นไหลและเป็นธรรมชาติ โครงการนี้ถูกพัฒนาด้วย Python โดยใช้ MediaPipe สำหรับการสกัดแลนมาร์ก OpenCV สำหรับการประมวลผลภาพแบบเรียลไทม์ และ Blender’s Python API สำหรับสร้างแอนิเมชัน 3 มิติ ด้วยการผสานเทคโนโลยี AI, การเข้ารหัสผ่าน VQVAE และการสร้างแลนมาร์กด้วย LLM ระบบนี้มุ่งหวังที่จะ เชื่อมช่องว่างระหว่างข้อความภาษาไทยและภาษามือไทย เพื่อมอบแพลตฟอร์มการแปลภาษามือแบบโต้ตอบ ในเวลาจริง ให้กับชุมชนผู้บกพร่องทางการได้ยินในประเทศไทย
การสื่อสารระหว่างบุคคลที่ได้ยินกับผู้พิการทางการได้ยินหรือบุคคลที่ไม่สามารถใช้คำพูดเป็นอุปสรรคสำคัญ โดยเฉพาะเมื่อบุคคลที่ได้ยินไม่มีความคุ้นเคยกับภาษามือไทย (TSL) ภาษามือไทยมีความซับซ้อนและต้องใช้การฝึกฝน ความตั้งใจ และประสบการณ์อย่างมากจึงจะเชี่ยวชาญได้ ซึ่งมักต้องใช้เวลาหลายเดือนของการศึกษาอย่างต่อเนื่อง แม้แต่เพื่อให้ได้ระดับความคล่องแคล่วขั้นพื้นฐาน สิ่งนี้ก่อให้เกิดช่องว่างด้านการเข้าถึง โดยเฉพาะกับผู้พิการทางการได้ยินที่อาจไม่เคยเรียนรู้ไวยากรณ์หรือภาษาไทยมาตรฐาน อาจพบความยากลำบากในการทำความเข้าใจข้อความภาษาไทยที่เขียน ซึ่งยิ่งทำให้การสื่อสารเป็นเรื่องที่ท้าทายยิ่งขึ้น แม้ว่าการใช้ข้อความเขียนอาจดูเหมือนเป็นทางออกหนึ่งของการสื่อสาร แต่ในความเป็นจริงอาจไม่ได้ผลเสมอไป เนื่องจากผู้พิการทางการได้ยินบางคนอาจไม่สามารถอ่านหรือทำความเข้าใจข้อความภาษาไทยได้อย่างคล่องแคล่ว อันเนื่องมาจากการไม่ได้สัมผัสกับไวยากรณ์ของภาษาพูดแบบดั้งเดิม นี่จึงเป็นเหตุผลสำคัญที่ต้องมีเครื่องมือแปลภาษาแบบเรียลไทม์ที่สามารถแปลงข้อความภาษาไทยเป็นภาษามือไทยได้อย่างถูกต้อง เพื่อช่วยลดช่องว่างนี้ และส่งเสริมให้เกิดปฏิสัมพันธ์ที่มีความหมายระหว่างผู้พิการทางการได้ยิน บุคคลที่ไม่สามารถใช้คำพูด และบุคคลที่ได้ยิน
วิทยาลัยอุตสาหกรรมการบินนานาชาติ
การวิเคราะห์นี้มุ่งเน้นไปที่องค์ประกอบที่สำคัญของแผนการบินเมื่อปฏิบัติการที่ระดับความสูงต่ำ การศึกษาสำรวจองค์ประกอบสำคัญที่นักบินและผู้ควบคุมการบินต้องพิจารณาเพื่อรับประกันความปลอดภัยของผู้โดยสาร ลูกเรือ และเครื่องบินขณะบินในระดับความสูงต่ำ ด้วยการตรวจสอบปัจจัยต่างๆ เช่น สภาพอากาศ ข้อจำกัดของน่านฟ้า การพิจารณาภูมิประเทศ และขั้นตอนฉุกเฉิน การวิเคราะห์นี้มีจุดมุ่งหมายเพื่อให้ข้อมูลเชิงลึกที่มีคุณค่าในการเพิ่มประสิทธิภาพกระบวนการวางแผนการบินสำหรับการปฏิบัติการในระดับความสูงต่ำ
คณะวิศวกรรมศาสตร์
ปัจจุบันแบตเตอรี่ลิเทียมถูกใช้งานอย่างแพร่หลายในอุปกรณ์อิเล็กทรอนิกส์และยานยนต์ไฟฟ้า ทำให้การประมาณสถานะสุขภาพ (State of Health: SOH) ของแบตเตอรี่มีความสำคัญอย่างมาก เนื่องจากสามารถช่วยยืดอายุการใช้งาน ลดค่าใช้จ่ายในการบำรุงรักษา และป้องกันปัญหาด้านความปลอดภัย เช่น ความร้อนสูงเกินหรือการระเบิด โครงงานนี้มีวัตถุประสงค์เพื่อศึกษาและวิเคราะห์แบบจำลองทางคณิตศาสตร์ของแบตเตอรี่ ตลอดจนพัฒนาเทคนิคการประมาณสถานะสุขภาพโดยใช้โครงข่ายประสาทเทียม (Neural Networks) เพื่อเพิ่มความแม่นยำและความรวดเร็วในการประเมิน การทดลองได้ทำการเก็บข้อมูลการประจุและคายประจุของแบตเตอรี่ลิเทียมจำนวน 3 เซลล์ ภายใต้อุณหภูมิที่ควบคุม และใช้กระแสคงที่ในการชาร์จและคายประจุไฟฟ้า พร้อมทั้งบันทึกค่ากระแส แรงดัน และเวลา จากนั้นนำข้อมูลที่ได้มาวิเคราะห์เพื่อหาค่าความจุของแบตเตอรี่ในแต่ละรอบการใช้งาน และใช้เป็นข้อมูลฝึกสอนโครงข่ายประสาทเทียม ผลลัพธ์ที่ได้ช่วยให้สามารถคาดการณ์สถานะสุขภาพของแบตเตอรี่ได้อย่างมีประสิทธิภาพ ผลจากโครงงานนี้สามารถนำไปพัฒนาระบบจัดการแบตเตอรี่ (Battery Management System) เพื่อช่วยปรับปรุงประสิทธิภาพและยืดอายุการใช้งานของแบตเตอรี่ ทั้งยังเป็นแนวทางในการนำเทคนิคปัญญาประดิษฐ์มาประยุกต์ใช้ในงานด้านพลังงานอย่างมีประสิทธิภาพ
คณะวิทยาศาสตร์
การผลิตน้ำตาลจากอ้อยเป็นกระบวนการที่มีความซับซ้อนและต้องการการควบคุมที่แม่นยำ หนึ่งในปัญหาสำคัญคือการสูญเสียน้ำตาล ซึ่งอาจเกิดจากหลายปัจจัย โดยเฉพาะ “การเผาอ้อย” ก่อนนำเข้าหีบ ที่ลดคุณภาพอ้อยและประสิทธิภาพการสกัดน้ำตาล รวมถึง ประสิทธิภาพเครื่องจักรและคุณสมบัติของอ้อย ที่ส่งผลต่อปริมาณน้ำตาลที่ได้ งานวิจัยนี้จึงมีวัตถุประสงค์เพื่อวิเคราะห์ปัจจัยที่ส่งผลต่อการสูญเสียน้ำตาลในกระบวนการผลิตน้ำตาลจากอ้อย โดยใช้ข้อมูลเชิงปริมาณจากโรงงานน้ำตาล ครอบคลุม 9 ตัวแปร ได้แก่ ประสิทธิภาพเครื่องจักร (Mechanical efficiency), จำนวนชั่วโมงหยุดเครื่องจักรในหนึ่งวัน (Stoppage), จำนวนชั่วโมงหยุดรออ้อยในหนึ่งวัน (Due to Cane), ปริมาณทรายในน้ำอ้อย (Sand), ประสิทธิภาพการหีบสกัดอ้อย (Pol Extraction), ประสิทธิภาพเวลาการทำงานโดยรวม (Overall Time), ค่าความบริสุทธิ์ของน้ำอ้อย (Purity), ค่าปริมาณน้ำตาลในอ้อย (C.C.S.), และปริมาณอ้อยไฟไหม้ (Burn Cane) โดยจะทำการวิเคราะห์ข้อมูลด้วยค่าสหสัมพันธ์ (Correlation) เพื่อตรวจสอบความสัมพันธ์ระหว่างตัวแปร และแบบจำลองการถดถอย (Regression Model) เพื่อพยากรณ์การสูญเสียน้ำตาล ผลการวิจัยพบว่า ประสิทธิภาพเครื่องจักร, ค่าปริมาณน้ำตาลในอ้อย และปริมาณทรายหรือสิ่งปนเปื้อนในน้ำอ้อย มีความสัมพันธ์อย่างมีนัยสำคัญกับการสูญเสียน้ำตาล โดยประสิทธิภาพเครื่องจักร มีความสัมพันธ์โดยตรงกับปริมาณอ้อยเข้าหีบ ซึ่งช่วยเพิ่มผลผลิตน้ำตาล ขณะที่ อ้อยไฟไหม้หรืออ้อยที่ถูกเผาก่อนการเก็บเกี่ยว ส่งผลให้การสกัดน้ำตาลลดลงและกระทบต่อคุณภาพน้ำตาล ดังนั้น การลดการสูญเสียน้ำตาลในกระบวนการผลิตสามารถทำได้โดย การเพิ่มประสิทธิภาพเครื่องจักร, ลดสิ่งปนเปื้อนในน้ำอ้อย และจัดการอ้อยไฟไหม้ ซึ่งจะช่วยปรับปรุงประสิทธิภาพการผลิตน้ำตาลให้สูงขึ้นได้ในอนาคต