KMITL Innovation Expo 2025 Logo

การเพิ่มประสิทธิภาพกระบวนการผลิต Hydrogen Manufacturing (HMU-2) และ Pressure Swing Adsorption (PSA-3)

การเพิ่มประสิทธิภาพกระบวนการผลิต Hydrogen Manufacturing (HMU-2) และ Pressure Swing Adsorption (PSA-3)

รายละเอียด

โครงการสหกิจนี้มีวัตถุประสงค์เพื่อปรับปรุงประสิทธิภาพกระบวนการผลิต Hydrogen Manufacturing Unit 2 (HMU-2) และ Pressure Swing Adsorption 3 (PSA-3) โดยการใช้แบบจำลองกระบวนการ AVEVA Pro/II และ แบบจำลอง Machine Learning เพื่อจำลองกระบวนการ ผลการศึกษาพบว่า แบบจำลอง AVEVA Pro/II สามารถทำนายผลลัพธ์ โดยมีความคลาดเคลื่อนอยู่ในช่วง 0–35% มีความคลาดเคลื่อนของอัตราการไหลของไฮโดรเจนจากหน่วย PSA สูงถึง 12% เกินเกณฑ์ 10% ที่บริษัทยอมรับได้ จึงได้พัฒนาแบบจำลอง Machine Learning โดยการปรับไฮเปอร์พารามิเตอร์ของอัลกอริทึมแบบ Random Forest ผลการศึกษาพบว่าแบบจำลองมีความแม่นยำสูง มีค่า Mean Squared Error (MSE) มีค่า 8.48 และ 0.18 สำหรับข้อมูลกระบวนการ และ ข้อมูลห้องปฏิบัติการ และ R-squared มีค่า 0.98 และ 0.88 สำหรับข้อมูลชุดเดียวกัน และพบว่าสามารถทำนายผลลัพธ์ได้แม่นยำกว่าแบบจำลอง AVEVA Pro/II ในทุกๆ ตัวแปร สามารถลดความคลาดเคลื่อนของอัตราการไหลของไฮโดรเจนจากหน่วย PSA เหลือเพียง 4.75 และ 1.35% สำหรับอัตราการผลิต 180 และ 220 ตันต่อวันตามลำดับ จึงได้นำแบบจำลองมาทำการ Optimization ตัวแปรกระบวนการ พบว่าสามารถให้ข้อแนะนำในการปรับค่าตัวแปรต่างๆ ได้ โดยสามารถเพิ่มผลผลิตไฮโดรเจนได้ 7.8 ตันต่อวัน และสร้างผลกำไรเพิ่มขึ้น 850,966.23 บาทต่อปี

วัตถุประสงค์

บริษัท ไทยออยล์ จำกัด (มหาชน) (TOP) ประกอบธุรกิจโรงกลั่นน้ำมันที่มีกระบวนการผลิตที่ทันสมัยและมีประสิทธิภาพสูง เพื่อผลิตและจำหน่ายน้ำมันปิโตรเลียมสำเร็จรูปป้อนตลาดในประเทศเป็นส่วนใหญ่ ทั้งยังขยายการลงทุนให้ครอบคลุมการผลิตผลิตภัณฑ์ปิโตรเคมี นํ้ามันหล่อลื่นพื้นฐาน เอทานอล รวมถึงการลงทุนในธุรกิจไฟฟ้า ตลอดจนธุรกิจขนส่งผลิตภัณฑ์ปิโตรเลียม และปิโตรเคมีทางเรือ ธุรกิจขนส่งผลิตภัณฑ์ปิโตรเลียมสำเร็จรูปทางท่อ และธุรกิจให้คำปรึกษาทางด้านพลังงาน ซึ่งมีโรงกลั่นอยู่ที่อำเภอศรีราชา จังหวัดชลบุรี โครงงานสหกิจนี้เกี่ยวข้องกับการทำงานร่วมกับหน่วยผลิต Hydrogen Manufacturing 2 (HMU-2) และ Pressure Swing Adsorption 3 (PSA-3) ซึ่งผลิตไฮโดรเจนบริสุทธิ์สูงสำหรับใช้ในกระบวนการต่าง ๆ เช่น Hydrocrackers, Hydrodesulphuriser และ Hydrotreaters หน่วยผลิตนี้มีบทบาทสำคัญในการแยกก๊าซธรรมชาติเหลือใช้จากกระบวนการก่อนหน้า ซึ่งมีความซับซ้อนสูงและต้องการการควบคุมอุณหภูมิและความดันอย่างแม่นยำเพื่อให้กระบวนการทำงานได้อย่างมีประสิทธิภาพ เนื่องจากการขาดเครื่องมือจำลองกระบวนการที่มีประสิทธิภาพส่งผลต่อความสามารถในการผลิตและประสิทธิภาพโดยรวม ทำให้ไม่สามารถส่งไฮโดรเจนให้กระบวนการข้างต้นได้ตามความต้องการ การใช้โปรแกรม AVEVA Pro/II ซึ่งเป็นเครื่องมือสำคัญในการจำลองกระบวนการผลิตในหน่วย HMU-2 และ PSA-3 พบว่ามีข้อผิดพลาดในการจำลองบางกระบวนการ ซึ่งส่งผลกระทบต่อความแม่นยำในการคาดการณ์พารามิเตอร์ที่เกี่ยวข้องกับการผลิตไฮโดรเจน การพัฒนาโมเดล Machine Learning จึงเป็นแนวทางใหม่ที่มีศักยภาพในการเพิ่มความแม่นยำในการคาดการณ์พารามิเตอร์กระบวนการต่าง ๆ เช่น อุณหภูมิ ความดัน และอัตราการไหล การนำเทคนิค Machine Learning มาช่วยในการคาดการณ์และปรับปรุงกระบวนการผลิตไฮโดรเจนให้ได้ตามความต้องการของหน่วยผลิตในบริษัทจึงเป็นสิ่งสำคัญในการเพิ่มประสิทธิภาพการผลิตและตอบสนองความต้องการที่สูงขึ้นได้อย่างมีประสิทธิผล

นวัตกรรมอื่น ๆ

ขั้วไฟฟ้าทองคำเปลวที่ตกแต่งด้วยวัสดุเชิงประกอบนาโนทองแพลทินัม-รูทิเนียม/รีดิวซ์กราฟีนออกไซด์ ชนิดใช้แล้วทิ้งและราคาถูก สำหรับแอปตาเซ็นเซอร์ไฟฟ้าเคมีที่มีความไวสูงในการวิเคราะห์อะฟลาทอกซิน B1 ในผลิตภัณฑ์ทางการเกษตร

คณะวิทยาศาสตร์

ขั้วไฟฟ้าทองคำเปลวที่ตกแต่งด้วยวัสดุเชิงประกอบนาโนทองแพลทินัม-รูทิเนียม/รีดิวซ์กราฟีนออกไซด์ ชนิดใช้แล้วทิ้งและราคาถูก สำหรับแอปตาเซ็นเซอร์ไฟฟ้าเคมีที่มีความไวสูงในการวิเคราะห์อะฟลาทอกซิน B1 ในผลิตภัณฑ์ทางการเกษตร

ด้วยจำนวนผู้ป่วยโรคตับแข็งและมะเร็งตับที่เพิ่มขึ้นอย่างมาก จากการบริโภคผลิตภัณฑ์ทางการเกษตรที่มีการปนเปื้อนอะฟลาท็อกซิน บี1 (AFB1) การพัฒนาเทคนิคการตรวจคัดกรอง AFB1 ที่รวดเร็วจึงมีความสำคัญอย่างยิ่ง งานวิจัยนี้ได้เสนอแอปตาเซ็นเซอร์ไฟฟ้าเคมีรูปแบบใหม่ ซึ่งใช้อิเล็กโทรดที่ผลิตจากแผ่นทองคำเปลว (GLE) ซึ่งตกแต่งด้วยวัสดุเชิงประกอบนาโนทองแพลทินัม-รูทิเนียม/รีดิวซ์กราฟีนออกไซด์ (AuPt-Ru/RGO) แบบใช้แล้วทิ้งและยังมีต้นทุนต่ำ วัสดุเชิงประกอบนาโนโลหะผสม AuPt-Ru นั้นถูกสังเคราะห์ขึ้นด้วยวิธีการเคมีรีดักชันทางเคมีร่วมกับการใช้คลื่นความถี่อัลตราโซนิก พบว่าอนุภาคที่สังเคราะห์ได้มีรูปร่างคล้ายผลหยางเหมย โดยมีแกนกลางเป็นทอง แพลตินัมเป็นขนล้อมรอบและรูทิเนียมกระจายอยู่รอบอนุภาค มีขนาดอนุภาคเฉลี่ย 57.35 ± 8.24 นาโนเมตร ทั้งนี้วัสดุเชิงประกอบนาโนทองแพลทินัม-รูทิเนียมได้ถูกวางลงบนแผ่นรีดิวซ์กราฟีนออกไซด์ที่มีขนาดส้นผ่านสูนย์กลางภายใน 0.5 – 1.6 ไมโครเมตรเพื่อเพิ่มประสิทธิภาพการถ่ายโอนอิเล็กตรอน และเพิ่มพื้นที่ผิวสำหรับการตรึงแอปตาเมอร์ (Apt) ซึ่งช่วยเพิ่มความสามารถในการตรวจวัด AFB1 ได้อย่างแม่นยำ ด้วยปริมาณตำแหน่งกัมมันต์ที่มีขนาดใหญ่ และค่าความต้านทานในวงจรไฟฟ้ากระสลับที่ต่ำแอปตาเซ็นเซอร์ไฟฟ้าเคมี GLEAuPt-Ru/RGO ที่สร้างขึ้นแสดงความไวสูงในการตรวจวิเคราะห์ AFB1 ผลการวิเคราะห์ด้วยเทคนิคโวลแทมเมทรีพัลส์เชิงอนุพันธ์ (DPV) ได้แสดงค่าความเป็นเส้นตรงสำหรับการตรวจวัด AFB1 ในช่วงความเข้มข้น 0.3 – 30.0 พิโคกรัมต่อมิลลิลิตร (R2 = 0.9972) โดยมีขีดจำกัดต่ำสุดของการตรวจวัด (LOD, S/N = 3) และขีดจำกัดต่ำสุดของการวิเคราะห์ (LOQ, S/N = 10) อยู่ที่ 0.009 พิโคกรัมต่อมิลลิลิตรและ 0.031 พิโคกรัมต่อมิลลิลิตร ตามลำดับ แอปตาเซ็นเซอร์ไฟฟ้าเคมี GLEAuPt-Ru/RGO ให้ผลลัพธ์การวิเคราะห์ AFB1 ที่ดีในตัวอย่างจริง โดยมีร้อยละค่าคืนกลับของสัญญาณอยู่ในช่วง 94.6% ถึง 107.9% ในผลิตภัณฑ์ทางการเกษตร เช่น พริกแดงแห้ง กระเทียม ถั่วลิสง พริกไทย และข้าวหอมมะลิไทย ซึ่งชี้ให้เห็นว่าแอปตาเซ็นเซอร์ไฟฟ้าเคมีที่สร้างขึ้นมีความเฉพาะเจาะจงต่อ AFB1 สูง และยังแสดงพฤติกรรมทางไฟฟ้าเคมีได้อย่างยอดเยี่ยมซึ่งคล้ายกับขั้วไฟฟ้าในเชิงพาณิชย์อื่น ๆ โดยมีศักยภาพในการนำไปประยุกต์ใช้ในการตรวจวิเคราะห์ AFB1 ในผลิตภัณฑ์ทางการเกษตรอย่างดียิ่ง

การพัฒนากระบวนการผลิตผลิตภัณฑ์ขนมขบเคี้ยวเพื่อสุขภาพจากแป้งข้าวกล้องงอกและแป้งกล้วยน้ำว้าโดยใช้กระบวนการเอ็กซ์ทรูชัน

คณะอุตสาหกรรมอาหาร

การพัฒนากระบวนการผลิตผลิตภัณฑ์ขนมขบเคี้ยวเพื่อสุขภาพจากแป้งข้าวกล้องงอกและแป้งกล้วยน้ำว้าโดยใช้กระบวนการเอ็กซ์ทรูชัน

การศึกษานี้มีวัตถุประสงค์เพื่อพัฒนาสูตรและกระบวนการผลิตขนมขบเคี้ยวจากแป้งข้าวกล้องงอกและแป้งกล้วยน้ำว้าโดยใช้กระบวนการเอ็กซ์ทรูชัน ผลการศึกษาแสดงให้เห็นว่าสามารถนำแป้งข้าวกล้องงอกและแป้งกล้วยน้ำว้ามาใช้เป็นวัตถุดิบหลักในการผลิตขนมขบเคี้ยวด้วยกระบวนการเอ็กซ์ทรูชันได้อย่างมีประสิทธิภาพ โดยสัดส่วนของแป้งในสูตรและสภาวะการผลิต เช่น ความชื้นของวัตถุดิบ อุณหภูมิของบาร์เรล และความเร็วของสกรู ส่งผลต่อคุณค่าทางโภชนาการ ปริมาณสารออกฤทธิ์ทางชีวภาพ และฤทธิ์ต้านอนุมูลอิสระของผลิตภัณฑ์อย่างมีนัยสำคัญ

ดีโฮม

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

ดีโฮม

ชิ้นงานนี้เป็นแบบจำลองเชิงแนวคิด (conceptual model) ที่นำแนวคิดสถาปัตยกรรมคตินิยมเปลี่ยนแนว (Deconstructivism) มาใช้ในการออกแบบ ภายใต้ชื่อ "DeHome" ซึ่งมาจากคำว่า Deconstruction Home โดยทำการแยกองค์ประกอบพื้นฐานของบ้าน ได้แก่ หลังคา เสา ประตู หน้าต่าง และอิฐ ออกเป็นส่วนๆ แล้วนำมาจัดวางใหม่ในรูปแบบที่สะท้อนความแตกกระจาย ขัดแย้ง และเคลื่อนไหว การออกแบบนี้ท้าทายแนวคิดดั้งเดิมของความมั่นคงของโครงสร้าง ผ่านการขยายขนาดขององค์ประกอบสำคัญ เช่น ประตู หน้าต่าง และเสา เพื่อเน้นความบิดเบี้ยวและพลังของการเปลี่ยนแปลง งานชิ้นนี้ไม่เพียงแค่รื้อโครงสร้างทางกายภาพของบ้าน แต่ยังเป็นการตีความใหม่ของแนวคิด "บ้าน" ในบริบทของสถาปัตยกรรมร่วมสมัยอีกด้วย