โครงการสหกิจนี้มีวัตถุประสงค์เพื่อปรับปรุงประสิทธิภาพกระบวนการผลิต Hydrogen Manufacturing Unit 2 (HMU-2) และ Pressure Swing Adsorption 3 (PSA-3) โดยการใช้แบบจำลองกระบวนการ AVEVA Pro/II และ แบบจำลอง Machine Learning เพื่อจำลองกระบวนการ ผลการศึกษาพบว่า แบบจำลอง AVEVA Pro/II สามารถทำนายผลลัพธ์ โดยมีความคลาดเคลื่อนอยู่ในช่วง 0–35% มีความคลาดเคลื่อนของอัตราการไหลของไฮโดรเจนจากหน่วย PSA สูงถึง 12% เกินเกณฑ์ 10% ที่บริษัทยอมรับได้ จึงได้พัฒนาแบบจำลอง Machine Learning โดยการปรับไฮเปอร์พารามิเตอร์ของอัลกอริทึมแบบ Random Forest ผลการศึกษาพบว่าแบบจำลองมีความแม่นยำสูง มีค่า Mean Squared Error (MSE) มีค่า 8.48 และ 0.18 สำหรับข้อมูลกระบวนการ และ ข้อมูลห้องปฏิบัติการ และ R-squared มีค่า 0.98 และ 0.88 สำหรับข้อมูลชุดเดียวกัน และพบว่าสามารถทำนายผลลัพธ์ได้แม่นยำกว่าแบบจำลอง AVEVA Pro/II ในทุกๆ ตัวแปร สามารถลดความคลาดเคลื่อนของอัตราการไหลของไฮโดรเจนจากหน่วย PSA เหลือเพียง 4.75 และ 1.35% สำหรับอัตราการผลิต 180 และ 220 ตันต่อวันตามลำดับ จึงได้นำแบบจำลองมาทำการ Optimization ตัวแปรกระบวนการ พบว่าสามารถให้ข้อแนะนำในการปรับค่าตัวแปรต่างๆ ได้ โดยสามารถเพิ่มผลผลิตไฮโดรเจนได้ 7.8 ตันต่อวัน และสร้างผลกำไรเพิ่มขึ้น 850,966.23 บาทต่อปี
บริษัท ไทยออยล์ จำกัด (มหาชน) (TOP) ประกอบธุรกิจโรงกลั่นน้ำมันที่มีกระบวนการผลิตที่ทันสมัยและมีประสิทธิภาพสูง เพื่อผลิตและจำหน่ายน้ำมันปิโตรเลียมสำเร็จรูปป้อนตลาดในประเทศเป็นส่วนใหญ่ ทั้งยังขยายการลงทุนให้ครอบคลุมการผลิตผลิตภัณฑ์ปิโตรเคมี นํ้ามันหล่อลื่นพื้นฐาน เอทานอล รวมถึงการลงทุนในธุรกิจไฟฟ้า ตลอดจนธุรกิจขนส่งผลิตภัณฑ์ปิโตรเลียม และปิโตรเคมีทางเรือ ธุรกิจขนส่งผลิตภัณฑ์ปิโตรเลียมสำเร็จรูปทางท่อ และธุรกิจให้คำปรึกษาทางด้านพลังงาน ซึ่งมีโรงกลั่นอยู่ที่อำเภอศรีราชา จังหวัดชลบุรี โครงงานสหกิจนี้เกี่ยวข้องกับการทำงานร่วมกับหน่วยผลิต Hydrogen Manufacturing 2 (HMU-2) และ Pressure Swing Adsorption 3 (PSA-3) ซึ่งผลิตไฮโดรเจนบริสุทธิ์สูงสำหรับใช้ในกระบวนการต่าง ๆ เช่น Hydrocrackers, Hydrodesulphuriser และ Hydrotreaters หน่วยผลิตนี้มีบทบาทสำคัญในการแยกก๊าซธรรมชาติเหลือใช้จากกระบวนการก่อนหน้า ซึ่งมีความซับซ้อนสูงและต้องการการควบคุมอุณหภูมิและความดันอย่างแม่นยำเพื่อให้กระบวนการทำงานได้อย่างมีประสิทธิภาพ เนื่องจากการขาดเครื่องมือจำลองกระบวนการที่มีประสิทธิภาพส่งผลต่อความสามารถในการผลิตและประสิทธิภาพโดยรวม ทำให้ไม่สามารถส่งไฮโดรเจนให้กระบวนการข้างต้นได้ตามความต้องการ การใช้โปรแกรม AVEVA Pro/II ซึ่งเป็นเครื่องมือสำคัญในการจำลองกระบวนการผลิตในหน่วย HMU-2 และ PSA-3 พบว่ามีข้อผิดพลาดในการจำลองบางกระบวนการ ซึ่งส่งผลกระทบต่อความแม่นยำในการคาดการณ์พารามิเตอร์ที่เกี่ยวข้องกับการผลิตไฮโดรเจน การพัฒนาโมเดล Machine Learning จึงเป็นแนวทางใหม่ที่มีศักยภาพในการเพิ่มความแม่นยำในการคาดการณ์พารามิเตอร์กระบวนการต่าง ๆ เช่น อุณหภูมิ ความดัน และอัตราการไหล การนำเทคนิค Machine Learning มาช่วยในการคาดการณ์และปรับปรุงกระบวนการผลิตไฮโดรเจนให้ได้ตามความต้องการของหน่วยผลิตในบริษัทจึงเป็นสิ่งสำคัญในการเพิ่มประสิทธิภาพการผลิตและตอบสนองความต้องการที่สูงขึ้นได้อย่างมีประสิทธิผล
คณะวิศวกรรมศาสตร์
งานวิจัยนี้ศึกษาการสร้างสเปกโตรโฟโตมิเตอร์แบบพิมพ์ 3 มิติ ซึ่งได้ทำการสร้างสเปกโตรโฟโตมิเตอร์แบบพิมพ์ 3 มิติ ด้วยโปรแกรม AutoCAD ทำให้ตัวเครื่องนั้นมีความแข็งแรงทนทาน ต้นทุนต่ำ และพกพาสะดวก เพื่อใช้ในการตรวจวัดปริมาณฟอร์มาลดีไฮด์ในอาหารทะเลสด
คณะวิศวกรรมศาสตร์
โครงการนี้นำหลักการของเทคโนโลยีปัญญาประดิษฐ์ และ Deep Learning มาจัดทำระบบตำรวจอัจฉริยะ (Smart Police) เพื่อวิเคราะห์อัตลักษณ์บุคคลและยานพาหนะที่ต้องสงสัยว่าเกี่ยวข้องกับการกระทำความผิดเพื่อใช้รักษาความปลอดภัยในชีวิตและทรัพย์สินของประชาชน โดยหลักการทำงานของระบบตำรวจอัจฉริยะ จะติดตั้งกล้อง CCTV ในพื้นที่ที่มีความเสี่ยงในกการโจรกรรม เพื่อตรวจจับบุคคลที่มีอำพรางอาวุธ โดยวิเคราะห์จากภาพจากกล้อง CCTV ด้วยการประมวลผลภาพและประยุกต์ใช้เทคโนโลยีปัญญาประดิษฐ์ ในการเฝ้าระวังและตรวจจับสิ่งที่อยู่ในเหตุการณ์ เมื่อมีการโจรกรรมหรือเหตุการผิดปกติ ระบบจะแจ้งเตือนเหตุการณ์เข้ามาที่ศูนย์เฝ้าระวังภายในสถานีตำรวจ เพื่อให้ตำรวจไปตรวจสอบความผิดเบื้องต้น และไปพื้นที่เกิดเหตุได้ทันเหตุการณ์เพื่อดำเนินการป้องกันหรือระงับเหตุ ในกรณีที่มีการหลบหนี ระบบจะติดตามรถยนต์ หรือ รถมอเตอร์ไซด์ พร้อมระบุเส้นทางที่สามารถใช้ในการหลบหนีโดยใช้การติดตามจากลักษณะของยานพาหนะ และป้ายทะเบียนของยานพาหนะที่ก่อเหตุ เพื่อทำการติดตามและระงับเหตุได้ ดังนั้นระบบตำรวจอัจฉริยะที่พัฒนาขึ้นเป็นการร่วมมือของคณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง, สำนักงานตำรวจภูธรภาค 2 มูลนิธิฉะเชิงเทราเพื่อการพัฒนา และสำนักงานเมืองอัจฉริยะจังหวัดฉะเชิงเทรา เพื่อป้องกันและป้องปรามการเกิดอาชญากรรม เพิ่มความปลอดภัยสาธารณะและความสงบเรียบร้อยให้แก่ประชาชนในพื้นที่จังหวัดฉะเชิงเทราซึ่งเป็นพื้นที่ในเขต EEC ซึ่งเป็นแหล่งเศรษฐกิจของประเทศ และเป็นแหล่งท่องเที่ยวใกล้กรุงเทพ และเป็นการสร้างเครือข่ายความร่วมมือทั้งภาครัฐ เอกชน และชุมชน ตลอดจนถ่ายทอดองค์ความรู้การใช้งานนวัตกรรมและการเขียนให้แก่ตำรวจและเจ้าหน้าที่ในการนำเทคโนโลยีไปใช้งานจริงและสามารถพัฒนาต่อยอดนวัตกรรมได้ใช้เอง ซึ่งเป็นการพัฒนาแบบต่อเนื่องในระยะยาวเพื่อให้เกิดความยั่งยืนและนําข้อมูลไปใช้ประโยชน์ด้านการวางแผนการดำเนินการรักษาความปลอดภัยและแผนการท่องเที่ยวของจังหวัดฉะเชิงเทรา
คณะอุตสาหกรรมอาหาร
Plant-based หมายถึง อาหารหรือผลิตภัณฑ์ที่ทำมาจากพืชเป็นหลัก สามารถแบ่งเป็น 2 ประเภท ได้แก่อาหารจากพืชทั้งหมดที่ไม่มีการใช้ผลิตภัณฑ์จากสัตว์เลย และอาหารที่มีส่วนผสมจากสัตว์ปริมาณน้อย เช่น ผลิตภัณฑ์ที่มีนมและไข่ในปริมาณน้อยก็อาจจะถูกเป็นพิจารณาอยู่ในความหมายของ Plant-based ด้วยเช่นกัน ผลิตภัณฑ์เนื้อสัตว์จากพืชที่มีความเหมือนจริงสูงและดึงดูดผู้บริโภคนับเป็นนวัตกรรมที่ค่อนข้างใหม่ แม้ว่า เต้าหู้ เทมเปห์ และเซตัน จะมีมานานแล้ว ในปัจจุบันเพิ่งมีการค้นพบและเริ่มผลิตผลิตภัณฑ์เนื้อสัตว์จากพืชที่ให้ลักษณะประสบการณ์ทางประสาทสัมผัสที่ผู้บริโภคแยกความแตกต่างระหว่างเนื้อสัตว์และเนื้อสัตว์จากพืชได้ยาก ทั้งนี้การพัฒนาผลิตภัณฑ์อาหารจากพืชต้องคำนึงถึงคุณภาพและความปลอดภัย เพื่อประโยชน์สูงสุดของผู้บริโภค Textured Vegetable Protein (TVP) คือ โปรตีนเกษตรที่ผลิตจากถั่วเหลืองผ่านการใช้เครื่องเอ็กซ์ทรูดเดอร์ (Extruder) ถูกนำมาใช้เป็นวัตถุดิบหลักในการผลิตผลิตภัณฑ์อาหารจากพืช เนื่องจากมีข้อดีหลายประการ เช่น โปรตีนสูงเพราะทำมาจากถั่วเหลืองที่ผ่านการสกัดไขมันออก, เนื้อสัมผัสของ TVP เมื่อผ่านการผสมน้ำจะมีเนื้อสัมผัสที่คล้ายเนื้อสัตว์, ความหลากหลาย TVP มีรสชาติที่เป็นกลาง จึงสามารถดูดซับรสชาติจากเครื่องปรุงและซอสต่างๆ ได้ง่าย, และเมื่อเทียบกับแหล่งโปรตีนชนิดอื่นๆ TVP มีต้นทุนราคาประหยัดที่ให้คุณลักษณะที่ดี การศึกษาครั้งนี้มุ่งเน้นไปที่การนำ TVP มาพัฒนาเป็นผลิตภัณฑ์เค้กเนื้อปูจากพืช (Plant-based Crab Cake) และทำการศึกษาอายุการเก็บรักษาของผลิตภัณฑ์ในภาชนะบรรจุปิดสนิทที่สภาวะแช่เย็น จากนั้นวิเคราะห์ด้านสุขอนามัยและความสะอาดของกระบวนการผลิตว่ามีผลต่อการมีอยู่หรือเจริญเติบโตของจุลินทรีย์ที่ก่อให้เกิดอันตรายต่อผู้บริโภคอย่างไร โดยอ้างอิงข้อกำหนดอาหารแช่เย็นของประเทศไทย สุดท้ายจัดทำข้อแนะนำในเรื่องของการทำความสะอาดพื้นที่ปฏิบัติการให้แก่สถานประกอบการเป็นแนวทางการจัดทำข้อมูลขั้นตอนปฏิบัติความปลอดภัยอาหารในห้องปฏิบัติการเบื้องต้น