โครงงานนี้มีวัตถุประสงค์เพื่อนำเสนอแนวทางการออกแบบห้องแปรรูปเครื่องในแดงสำหรับโรงงานแปรรูปสุกร ที่มีการแปรรูปสุกร 500 ตัวต่อวันหรือ 80 ตัวต่อชั่วโมง น้ำหนักสุกรเฉลี่ยประมาณ 105 กิโลกรัม/ตัว มีเครื่องในแดงอยู่ร้อยละ 3.47 เพื่อทำการแยกชิ้นส่วน ตับ ขั้วตับ หัวใจ ปอด ม้ามและไต ตามต้องการ และทำการแช่ในน้ำเย็นเพื่อลดอุณหภูมิให้ต่ำกว่า 7 องศาเซลเซียส แล้วจึงนำบรรจุและปิดผนึก การคัดแยกใช้จำนวนชิ้นและน้ำหนักเป็นเกณฑ์ในการคัดแยกตามแต่ชนิด เวลาในการแปรรูป การแช่น้ำเย็นและการบรรจุมีความแตกต่างกันตามชนิดและขนาดสินค้า ข้อมูลในการออกแบบได้จากการเก็บข้อมูลในสายการผลิตปัจจุบันและข้อมูลอ้างอิงตามมาตรฐานต่าง ๆ ออกแบบห้องแปรรูปตามหลักการวางผังโรงงานอย่างเป็นระบบ (Systematic Layout Planning: SLP) วิเคราะห์ความสัมพันธ์ของกิจกรรมภายในห้อง จัดทำแผนผังสำหรับการกำหนดพื้นที่ใช้งาน คำนวณขนาดอุปกรณ์และจำนวนผู้ปฏิบัติงานที่จำเป็นต่อการใช้งาน พื้นที่ของห้องเครื่องในแดงถูกออกแบบมีขนาด 56 ตารางเมตร หลังจากออกแบบแผนผังได้มีการจำลองห้องในรูปแบบ 3 มิติด้วยโปรแกรม SketchUp 2024 พร้อมทั้งจำลองและวิเคราะห์การทำงานในห้องด้วยโปรแกรม Flexsim 2024
บริษัท เบทาโกร จำกัด (มหาชน) ได้มีแผนการขยายโรงงานแปรรูปสุกรทั้งในประเทศและต่างประเทศ การออกแบบกระบวนการผลิตจึงเป็นสิ่งสำคัญที่ทำให้โรงงานที่จะก่อตั้งนั้นสามารถใช้งานได้อย่างมีประสิทธิภาพทั้งในด้านกระบวนการการผลิตและความสะอาด เพื่อทำให้สินค้าที่ส่งมอบแก่ผู้บริโภคมีคุณภาพที่ดี โดยผลิตภัณฑ์ที่สำคัญของโรงงานแปรรูปสุกร ได้แก่ กลุ่มชิ้นส่วนสุกรตัดแต่ง และกลุ่มเครื่องในสุกร ซึ่งประกอบไปด้วยเครื่องในแดง และเครื่องในขาว โครงงานนี้ได้รับมอบหมายให้ศึกษากระบวนการทำงานเพื่อออกแบบห้องเครื่องในแดงให้รองรับการผลิตที่สูงขึ้นและมีความหลากหลายของผลิตภัณฑ์มากขึ้น โดยกระบวนการทำงานภายในห้องถูกต้องเป็นไปตามหลักการปฏิบัติที่ดีสำหรับโรงแปรรูปสุกรของกรมปศุสัตว์
คณะวิทยาศาสตร์
ในปัจจุบัน การเปลี่ยนแปลงสภาพภูมิอากาศและกิจกรรมของมนุษย์ส่งผลให้แนวปะการังทั่วโลกเผชิญกับภาวะเสื่อมโทรมอย่างรวดเร็ว การตรวจสอบสุขภาพของปะการังจึงมีความสำคัญอย่างยิ่งต่อการอนุรักษ์ระบบนิเวศทางทะเล โครงการนี้มุ่งเน้นการพัฒนาแบบจำลองปัญญาประดิษฐ์ (AI) เพื่อจำแนกสุขภาพของปะการังออกเป็นสี่ประเภท ได้แก่ ปะการังแข็งแรง (Healthy), ปะการังฟอกขาว (Bleached), ปะการังซีด (Pale), และปะการังตาย (Dead) โดยใช้โครงข่ายประสาทเทียมเชิงลึก (Deep Learning) เป็นพื้นฐานในการฝึกสอนแบบจำแนกภาพ ในกระบวนการฝึกแบบจำลอง ได้มีการใช้เทคนิค Cross-Validation (k=5) เพื่อเพิ่มความแม่นยำ พร้อมทั้งบันทึกโมเดลที่มีประสิทธิภาพดีที่สุดหลังการฝึกผลลัพธ์ของโครงการนี้สามารถนำไปประยุกต์ใช้ในการติดตามการเปลี่ยนแปลงของแนวปะการัง และช่วยนักวิทยาศาสตร์ทางทะเลวิเคราะห์ข้อมูลได้อย่างรวดเร็วและแม่นยำยิ่งขึ้น ซึ่งจะเป็นประโยชน์ต่อการวางแผนอนุรักษ์ระบบนิเวศทางทะเลในอนาคต
วิทยาลัยเทคโนโลยีและนวัตกรรมวัสดุ
การใช้เซนเซอร์ทางเคมีไฟฟ้าร่วมกับแสงเพื่อตรวจวัดสารเร่งเนื้อแดงที่มีชื่อว่า "ซาลบูทามอล(Salbutamol)" โดยอาศัยเทคนิคพอลิเมอร์ลอกแบบโมเลกุลในการตรวจวัดร่วมกับวัสดุนาโนคอมพอสิตคอปเปอร์ออกไซด์และกราฟิติกคาร์บอนไนไตรด์(CuO/g-C₃N₄ Nanocomposite) ในการเพิ่มประสิทธิภาพของเซนเซอร์
คณะวิทยาศาสตร์
วัสดุตัวเร่งปฏิกิริยาเชิงแสงที่ตกแต่งด้วยวัสดุนาโนโลหะ (Bi-Metallic NPs/ Photocatalyst) ได้ถูกสังเคราะห์ ในการสลายอะฟลาทอกซิน บี1 ตัวเร่งปฏิกิริยาเชิงแสงที่ตกแต่งด้วยวัสดุนาโนโลหะถูกสังเคราะห์ด้วยคลื่นอัลตราโซนิก (Ultrasonic waves) วัสดุถูกนำมาศึกษาคุณลักษณะทางเคมีโดยการใช้เทคนิค Transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction analysis (XRD), Fourier transform infrared spectrometer (FT-IR), Zeta potential analyzer และ UV-visible spectrophotometer อนุภาคนาโนโลหะบนตัวเร่งปฏิกิริยาเชิงแสงถูกนำมาทดสอบประสิทธิภาพในการย่อยสลาย AFB1 ในน้ำเสียจากน้ำทิ้งครัวเรือนภายใต้แสงวิสิเบิล โดยนำมาวิเคราะห์ด้วยโครมาโตกราฟีของเหลวสมรรถนะสูง ช่วงความยาวคลื่น 365 นาโนเมตร พบว่าสามารถกำจัด AFB1 ได้อย่างมีประสิทธิภาพถึง 100 % ภายในเวลา 2 นาที ประสิทธิภาพที่เหนือชั้นนี้เป็นผลมาจาก โครงสร้างที่มีรูพรุนสูง พื้นที่ผิวจำเพาะที่เพิ่มขึ้น และอัตราการรวมตัวใหม่ของอิเล็กตรอน-โฮลที่ลดลง แสดงให้เห็นว่าวัสดุนาโนที่ได้พัฒนาประสบความสำเร็จในการสลาย AFB1