การประเมินผลผลิตของผลมะม่วง และพฤติกรรมของผู้บริโภคที่มีความตระหนักถึงที่มาของผลผลิตมากยิ่งขึ้น ต้องการตรวจสอบย้อนกลับถึงที่มาของผลผลิตว่าผลผลิตนั้นๆได้รับการดูแลมาอย่างไรผ่านการระบุตำแหน่งของผลนั้นๆ ความเกี่ยวเนื่องกันถึงลักษะของผลผลิตที่เป็นผลมาจากวิธีการดูแลผลหรือต้นของผลผลิตในขณะที่ยังไม่ถูกเก็บเกี่ยว ดังนั้นเพื่อสร้างแบบจำลองที่สามารถตรวจจับและระบุตำแหน่งของผลมะม่วง โดยใช้ภาพถ่าย 2 มิติ ด้วยวิธีการ Deep Learning Model และเพื่อศึกษาเทคนิคการระบุพิกัดของผลมะม่วงในโลกจริงจากภาพภาพ 2 มิติ มีการใช้โมเดล YOLOv8 เพื่อ Object detection ร่วมกับเทคนิคการสอบเทียบกล้อง (Camera Calibration) และ Triangulation เพื่อหาตำแหน่ง 3 มิติ ของผลมะม่วงในภาพที่ถูกตรวจจับได้ จากการทำการทดลองหาตำแหน่งทั้งหมด 125 ครั้ง ที่มีการสุ่มค่าตำแหน่งของผลมะม่วง และตำแหน่งของกล้องที่มีมุม Yaw และ Pitch ที่แตกต่างกัน โดยการใช้ค่า Parameter จากรูปที่ถ่ายถัดไปมาเปรียบเทียบกันเพื่อหาตำแหน่งจริง 3 มิติ ที่ได้ผลความถูกต้องที่..... จากการใช้โมเดล YOLOv8 ที่มีค่าทำนาย Precision, Recall, mAP50, mAP50-95 และ F1-Score ได้แก่ 0.928, 0.901, 0.965, 0.785 และ 0.914 ตามลำดับ ซึ่งมีความแม่นยำที่มากพอเพื่อทำนายตำแหน่งของผลมะม่วงที่มีความคลาดเคลื่อนประมาณ 38 เซนติเมตร
ในปัจจุบัน เทคโนโลยีทางการเกษตรได้รับการพัฒนาอย่างต่อเนื่อง เพื่อเพิ่มประสิทธิภาพในการผลิตและการจัดการผลผลิตอย่างแม่นยำ การตรวจจับตำแหน่งของผลผลิตในพื้นที่เกษตรกรรมถือเป็นหนึ่งในความท้าทายสำคัญที่นักวิจัยและผู้ประกอบการในอุตสาหกรรมเกษตรกรรมต้องการหาทางออก โดยเฉพาะการตรวจจับและการประเมินผลผลิตของผลมะม่วง ที่เป็นผลไม้ที่มีความสำคัญทางเศรษฐกิจในหลายประเทศ ซึ่งประเทศไทยเป็นหนึ่งในผู้ผลิตมะม่วงรายใหญ่ของโลก รวมถึงพฤติกรรมของผู้บริโภคที่มีความตระหนักถึงที่มาของผลผลิตมากยิ่งขึ้น ต้องการตรวจสอบย้อนกลับถึงที่มาของผลผลิตว่าผลผลิตนั้นๆได้รับการดูแลมาอย่างไรผ่านการระบุตำแหน่งของผลนั้นๆ ทั้งเป็นแหล่งข้อมูลที่บ่งบอกถึงลักษะของผลผลิตที่ได้มาได้ผ่านการดูแลรูปแบบใดในขณะที่ยังไม่ถูกเก็บเกี่ยว การพัฒนาเทคนิคในการหาตำแหน่งบนโลกจริง 3 มิติ ของมะม่วงจากข้อมูลภาพ 2 มิติ จึงเป็นเรื่องที่มีความสำคัญอย่างยิ่งในด้านการเกษตร เนื่องจากการตรวจจับและการประเมินผลผลิตในพื้นที่เกษตรกรรมเป็นขั้นตอนสำคัญในการจัดการและการเก็บเกี่ยวผลผลิต เทคนิคที่ใช้ในงานวิจัยนี้คือการผสมผสานระหว่างการสอบเทียบกล้อง (Camera Calibration) การตรวจจับวัตถุจากภาพ 2 มิติเพื่อคำนวณตำแหน่งในมิติ 3 มิติ โดยเทคนิค Triangulation และเทคโนโลยีการตรวจจับภาพที่มีความแม่นยำสูงอย่าง YOLOv8 มาใช้ ซึ่งเป็นโมเดลที่พัฒนาโดยใช้การเรียนรู้เชิงลึก (deep learning) ที่มีประสิทธิภาพในการตรวจจับวัตถุในภาพได้อย่างรวดเร็วและแม่นยำ ทั้งนี้ผู้จัดทำจึงมีแนวคิดที่ต้องการพัฒนาวิธีการหาตำแหน่งของผลมะม่วง เพื่อเพิ่มความสามารถในการประเมินผลผลิตทางการเกษตร ซึ่งเป็นปัจจัยสำคัญในการทำการเกษตรแบบเกษตรแม่นยำ (Precision Agriculture) การใช้เทคโนโลยีที่มีความแม่นยำสูงในการตรวจจับและประมวลผลข้อมูลภาพสามารถช่วยให้การจัดการผลผลิตในภาคเกษตรกรรมมีประสิทธิภาพมากขึ้น การรับรู้ข้อมูลของผลผลิต ลดความผิดพลาดในการประเมิน และความรวดเร็วในการจัดการ นอกจากนี้ยังสามารถนำไปประยุกต์ใช้ในการพัฒนาเทคโนโลยีใหม่ๆ ที่สามารถช่วยเพิ่มผลผลิตในภาคเกษตรกรรมและเสริมสร้างความยั่งยืนในอุตสาหกรรมเกษตรกรรมในอนาคต
คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี
สแน็คกรอบขาวไรซ์เบอร์รี เป็นผลิตภัณฑ์ที่ได้จากการนำข้าวหักไรซ์เบอร์รีมาแปรรูปเป็นขนมขบเคี้ยวที่มีลักษณะเป็นแผ่นบางกรอบ ขนาดพอคำ โดยนำข้าวหักไรซ์เบอร์รีมาผ่านการทำสุก นำมาบดละเอียด และผสมกับวัตถุดิบชนิดอื่นเพื่อเพิ่มคุณค่าทางอาหาร ได้แก่ ผสมเมล็ดพืช เพิ่มเพิ่มสารอาหารประเภทโปรตีนจากพืช จากนั้นนำมาขึ้นรูปเป็นแผ่นโดยใช้ความร้อน ลักษณะของผลิตภัณฑ์ที่ได้เป็นแผ่นบาง มีสีน้ำตาลอมม่วง มีความกรอบ มีกลิ่นของส่วนผสมที่ใช้ในการผลิต ไม่มีส่วนผสมของน้่ำตาลและสารให้ความหวาน ใช้บริโภคเป็นขนมขบเคี้ยวร่วมกับเครื่องดื่มประเภทชา กาแฟ วาฟเฟิลกรอบไรซ์เบอร์รีเป็นผลิตภัณฑ์ที่มีสารอาหารครบถ้วน ทั้งคาร์โบไฮเดรท โปรตีน ไขมัน ซึ่งได้มาจากส่วนผสมในสูตรการผลิต
คณะวิทยาศาสตร์
โครงงานนี้พัฒนาตู้รับซื้ออัตโนมัติสำหรับขวดพลาสติกและกระป๋อง โดยใช้ Machine Learning ในการจำแนกประเภทบรรจุภัณฑ์ผ่านการประมวลผลภาพ ร่วมกับระบบเซนเซอร์อัจฉริยะในการตรวจสอบคุณภาพของบรรจุภัณฑ์และควบคุมการทำงาน ระบบเชื่อมต่อกับ Web Application เพื่อแสดงผลและควบคุมการทำงานแบบเรียลไทม์ เมื่อยืนยันประเภทบรรจุภัณฑ์แล้ว จะคำนวณราคาและจ่ายเงินผ่าน e-wallet หรือออกคูปองแลกเงินสดโดยอัตโนมัติ ระบบนี้สามารถติดตั้งในพื้นที่สาธารณะเพื่อส่งเสริมการคัดแยกขยะตั้งแต่ต้นทาง ช่วยลดการปนเปื้อนและเพิ่มประสิทธิภาพการรีไซเคิล อีกทั้งยังสร้างแรงจูงใจทางการเงินให้ประชาชนมีส่วนร่วมในการจัดการขยะมากขึ้น โครงงานนี้แสดงให้เห็นถึงศักยภาพของการผสมผสาน Machine Learning และระบบเซนเซอร์อัจฉริยะในการพัฒนาโซลูชันการจัดการขยะที่แม่นยำ สะดวก และยั่งยืน **
คณะเทคโนโลยีการเกษตร
นวัตกรรมชุดการเลี้ยงหอยหวานทองในแนวตั้งด้วยระบบอควาโปนิกส์เป็นรูปแบบของการเกษตรแบบผสมผสานระหว่างการเลี้ยงหอยหวานทองกับการปลูกผัก โดยระบบดังกล่าวโดยมีจุดมุ่งหมายเพื่อใช้พื้นที่ในแนวดิ่งให้เกิดประโยชน์สูงสุด ประหยัดน้ำในการเลี้ยงและผลิตพืชผักที่ปลอดภัยทั้งเพื่อการบริโภคหรือจำหน่าย รวมทั้งเป็นการเกื้อกูลระหว่างสิ่งมีชีวิตในระบบ ซึ่งหอยหวานทองจะขับถ่ายของเสียออกมา/เศษอาหารที่หลงเหลือจะถูกกรองบนวัสดุ ที่ใช้ในการบำบัดน้ำ ในขณะเดียวกันแบคทีเรียตามธรรมชาติจะช่วยเปลี่ยนของเสียต่างๆ เหล่านี้ให้อยู่ในรูปธาตุอาหารที่พืชนำมาใช้ประโยชน์ ดังนั้นระบบดังกล่าวจึงเป็นมิตรต่อต่อสิ่งแวดล้อม