โครงการนี้นำหลักการของเทคโนโลยีปัญญาประดิษฐ์ และ Deep Learning มาจัดทำระบบตำรวจอัจฉริยะ (Smart Police) เพื่อวิเคราะห์อัตลักษณ์บุคคลและยานพาหนะที่ต้องสงสัยว่าเกี่ยวข้องกับการกระทำความผิดเพื่อใช้รักษาความปลอดภัยในชีวิตและทรัพย์สินของประชาชน โดยหลักการทำงานของระบบตำรวจอัจฉริยะ จะติดตั้งกล้อง CCTV ในพื้นที่ที่มีความเสี่ยงในกการโจรกรรม เพื่อตรวจจับบุคคลที่มีอำพรางอาวุธ โดยวิเคราะห์จากภาพจากกล้อง CCTV ด้วยการประมวลผลภาพและประยุกต์ใช้เทคโนโลยีปัญญาประดิษฐ์ ในการเฝ้าระวังและตรวจจับสิ่งที่อยู่ในเหตุการณ์ เมื่อมีการโจรกรรมหรือเหตุการผิดปกติ ระบบจะแจ้งเตือนเหตุการณ์เข้ามาที่ศูนย์เฝ้าระวังภายในสถานีตำรวจ เพื่อให้ตำรวจไปตรวจสอบความผิดเบื้องต้น และไปพื้นที่เกิดเหตุได้ทันเหตุการณ์เพื่อดำเนินการป้องกันหรือระงับเหตุ ในกรณีที่มีการหลบหนี ระบบจะติดตามรถยนต์ หรือ รถมอเตอร์ไซด์ พร้อมระบุเส้นทางที่สามารถใช้ในการหลบหนีโดยใช้การติดตามจากลักษณะของยานพาหนะ และป้ายทะเบียนของยานพาหนะที่ก่อเหตุ เพื่อทำการติดตามและระงับเหตุได้ ดังนั้นระบบตำรวจอัจฉริยะที่พัฒนาขึ้นเป็นการร่วมมือของคณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง, สำนักงานตำรวจภูธรภาค 2 มูลนิธิฉะเชิงเทราเพื่อการพัฒนา และสำนักงานเมืองอัจฉริยะจังหวัดฉะเชิงเทรา เพื่อป้องกันและป้องปรามการเกิดอาชญากรรม เพิ่มความปลอดภัยสาธารณะและความสงบเรียบร้อยให้แก่ประชาชนในพื้นที่จังหวัดฉะเชิงเทราซึ่งเป็นพื้นที่ในเขต EEC ซึ่งเป็นแหล่งเศรษฐกิจของประเทศ และเป็นแหล่งท่องเที่ยวใกล้กรุงเทพ และเป็นการสร้างเครือข่ายความร่วมมือทั้งภาครัฐ เอกชน และชุมชน ตลอดจนถ่ายทอดองค์ความรู้การใช้งานนวัตกรรมและการเขียนให้แก่ตำรวจและเจ้าหน้าที่ในการนำเทคโนโลยีไปใช้งานจริงและสามารถพัฒนาต่อยอดนวัตกรรมได้ใช้เอง ซึ่งเป็นการพัฒนาแบบต่อเนื่องในระยะยาวเพื่อให้เกิดความยั่งยืนและนําข้อมูลไปใช้ประโยชน์ด้านการวางแผนการดำเนินการรักษาความปลอดภัยและแผนการท่องเที่ยวของจังหวัดฉะเชิงเทรา
-
คณะเทคโนโลยีการเกษตร
ทุเรียนเป็นพืชเศรษฐกิจที่สำคัญของประเทศไทยและเป็นสินค้าส่งออกที่มีปริมาณสูงที่สุดในโลก อย่างไรก็ตาม การผลิตทุเรียนให้มีคุณภาพสูงจำเป็นต้องอาศัยการดูแลสุขภาพของต้นทุเรียนให้แข็งแรงและปราศจากโรค เพื่อให้สามารถให้ผลผลิตได้อย่างมีประสิทธิภาพ และลดความเสียหายที่อาจเกิดขึ้นกับทั้งต้นและผลทุเรียน โรคที่พบได้บ่อยและสามารถแพร่กระจายได้อย่างรวดเร็ว มักเป็นโรคที่เกิดขึ้นบริเวณใบ ซึ่งส่งผลกระทบโดยตรงต่อการเจริญเติบโตของต้นทุเรียนและคุณภาพของผลผลิต การตรวจสอบและควบคุมโรคทางใบจึงเป็นปัจจัยสำคัญในการรักษาคุณภาพของทุเรียน งานวิจัยนี้มีวัตถุประสงค์เพื่อนำเทคโนโลยีการวิเคราะห์ภาพถ่ายร่วมกับปัญญาประดิษฐ์ (Artificial Intelligence: AI) มาประยุกต์ใช้ในการจำแนกโรคที่เกิดขึ้นในใบทุเรียน เพื่อให้เกษตรกรสามารถตรวจสอบโรคได้ด้วยตนเองโดยไม่ต้องอาศัยผู้เชี่ยวชาญ โดยจำแนกใบออกเป็น 3 ประเภท ได้แก่ ใบสุขภาพดี (Healthy: H) ใบที่ติดเชื้อแอนแทรคโนส (Anthracnose: A) และใบที่ติดเชื้อจุดสาหร่าย (Algal Spot: S) ทั้งนี้ ได้นำอัลกอริทึม Convolutional Neural Networks (CNN) ได้แก่ ResNet-50, GoogleNet และ AlexNet มาใช้ในการพัฒนาแบบจำลองเพื่อจำแนกประเภทของโรค ผลการทดลองพบว่า แบบจำลองที่ใช้ ResNet-50, GoogleNet และ AlexNet ให้ค่าความแม่นยำในการจำแนกใบเท่ากับ 93.57%, 93.95% และ 68.69% ตามลำดับ
คณะวิทยาศาสตร์
ปัญหาพิเศษนี้มีวัตถุประสงค์เพื่อพัฒนาและเปรียบเทียบประสิทธิภาพของแบบจำลองการทำนายราคาทองคำโดยใช้ตัวแปรเชิงปริมาณและ ข้อมูลข้อความจากข่าว งานวิจัยนี้ใช้ตัวแปรต้น 9 ตัว ได้แก่ ราคาน้ำ มันดิบเบรนท์ ราคาน้ำมันดิบ WTI ราคาโลหะเงิน ราคาแพลทินัม อัตราดอกเบี้ยนโยบายของธนาคารกลางสหรัฐ (FED) ดัชนีตลาดหุ้น ญี่ปุ่น นิกเคอิ 225 ดัชนีค่าเฉลี่ยอุตสาหกรรมดาวโจนส์ ดัชนี S&P 500และข้อมูลข่าวจากสำนักข่าวกรุงเทพธุรกิจ ข้อมูลข่าวสารที่เกี่ยวข้องจะ ถูกนำมาวิเคราะห์ด้วยเทคนิคการประมวลผลภาษาธรรมชาติ (Natural Language Processing - NLP) และนำมาประยุกต์ใช้ร่วม กับแบบจำลองการเรียนรู้ของเครื่อง (Machine Learning) โดยเปรียบเทียบ 3 วิธี ได้แก่ Gradient Boosting, Machine Learning Models และ Regression Analysis จากนั้นทำการประเมินประสิทธิภาพของแบบจำลองโดยใช้ตัวชี้วัด 3 ตัว ได้แก่ รากของค่าคลาดเคลื่อนกำลังสองเฉลี่ย (Root Mean Square Error: RMSE), ค่าคลาดเคลื่อนสัมบูรณ์เฉลี่ย (Mean Absolute Error: MAE) และ สัมประสิทธิ์การกำหนด (Coefficient of Determination: R^2) งานวิจัยนี้คาดหวังว่าแบบจำลองที่พัฒนาขึ้นจะสามารถช่วยให้นักลงทุนและนักวิเคราะห์สามารถใช้ข้อมูลเชิงปริมาณและข่าวสารในการทำนายราคาทองคำได้อย่างมีประสิทธิภาพมากขึ้น
วิทยาลัยการจัดการนวัตกรรมและอุตสาหกรรม
Air Rack เป็นผลิตภัณฑ์ที่ออกแบบมาเพื่อตอบโจทย์ธุรกิจที่มีข้อจำกัดด้านพื้นที่และงบประมาณในการสร้างห้องเซิร์ฟเวอร์ ระบบระบายความร้อน และการจัดการเสียงรบกวน ระบบนี้ช่วยให้สามารถใช้งานอุปกรณ์ไอทีในพื้นที่เปิดได้อย่างมีประสิทธิภาพ โดยรองรับทั้งการทำงานแบบ On-premise และ On-cloud ผ่านการแปลงข้อมูลจากเซ็นเซอร์เป็นข้อมูลดิจิทัลและแสดงผลผ่าน Dashboard ผู้ใช้สามารถควบคุม ติดตาม และวิเคราะห์ข้อมูลได้จากระยะไกล อีกทั้งระบบยังช่วยลดการใช้พลังงานไฟฟ้าและค่าใช้จ่ายในการบริหารจัดการห้องเซิร์ฟเวอร์แบบเดิมได้อย่างมีนัยสำคัญ