
โครงการนี้นำหลักการของเทคโนโลยีปัญญาประดิษฐ์ และ Deep Learning มาจัดทำระบบตำรวจอัจฉริยะ (Smart Police) เพื่อวิเคราะห์อัตลักษณ์บุคคลและยานพาหนะที่ต้องสงสัยว่าเกี่ยวข้องกับการกระทำความผิดเพื่อใช้รักษาความปลอดภัยในชีวิตและทรัพย์สินของประชาชน โดยหลักการทำงานของระบบตำรวจอัจฉริยะ จะติดตั้งกล้อง CCTV ในพื้นที่ที่มีความเสี่ยงในกการโจรกรรม เพื่อตรวจจับบุคคลที่มีอำพรางอาวุธ โดยวิเคราะห์จากภาพจากกล้อง CCTV ด้วยการประมวลผลภาพและประยุกต์ใช้เทคโนโลยีปัญญาประดิษฐ์ ในการเฝ้าระวังและตรวจจับสิ่งที่อยู่ในเหตุการณ์ เมื่อมีการโจรกรรมหรือเหตุการผิดปกติ ระบบจะแจ้งเตือนเหตุการณ์เข้ามาที่ศูนย์เฝ้าระวังภายในสถานีตำรวจ เพื่อให้ตำรวจไปตรวจสอบความผิดเบื้องต้น และไปพื้นที่เกิดเหตุได้ทันเหตุการณ์เพื่อดำเนินการป้องกันหรือระงับเหตุ ในกรณีที่มีการหลบหนี ระบบจะติดตามรถยนต์ หรือ รถมอเตอร์ไซด์ พร้อมระบุเส้นทางที่สามารถใช้ในการหลบหนีโดยใช้การติดตามจากลักษณะของยานพาหนะ และป้ายทะเบียนของยานพาหนะที่ก่อเหตุ เพื่อทำการติดตามและระงับเหตุได้ ดังนั้นระบบตำรวจอัจฉริยะที่พัฒนาขึ้นเป็นการร่วมมือของคณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง, สำนักงานตำรวจภูธรภาค 2 มูลนิธิฉะเชิงเทราเพื่อการพัฒนา และสำนักงานเมืองอัจฉริยะจังหวัดฉะเชิงเทรา เพื่อป้องกันและป้องปรามการเกิดอาชญากรรม เพิ่มความปลอดภัยสาธารณะและความสงบเรียบร้อยให้แก่ประชาชนในพื้นที่จังหวัดฉะเชิงเทราซึ่งเป็นพื้นที่ในเขต EEC ซึ่งเป็นแหล่งเศรษฐกิจของประเทศ และเป็นแหล่งท่องเที่ยวใกล้กรุงเทพ และเป็นการสร้างเครือข่ายความร่วมมือทั้งภาครัฐ เอกชน และชุมชน ตลอดจนถ่ายทอดองค์ความรู้การใช้งานนวัตกรรมและการเขียนให้แก่ตำรวจและเจ้าหน้าที่ในการนำเทคโนโลยีไปใช้งานจริงและสามารถพัฒนาต่อยอดนวัตกรรมได้ใช้เอง ซึ่งเป็นการพัฒนาแบบต่อเนื่องในระยะยาวเพื่อให้เกิดความยั่งยืนและนําข้อมูลไปใช้ประโยชน์ด้านการวางแผนการดำเนินการรักษาความปลอดภัยและแผนการท่องเที่ยวของจังหวัดฉะเชิงเทรา
-

คณะเทคโนโลยีการเกษตร
โครงงานสวนสาธารณะ : เเอนเซียนท์ ซี ปาร์ค เป็นสวนสาธารณะเเห่งใหม่ที่อ่างศิลา จังหวัดชลบุรี สร้างเพื่อการเรียนรู้เเละการท่องเที่ยว ในเเนวคิดท้องทะเลเมื่อ65ปีก่อน

คณะวิศวกรรมศาสตร์
การบูรณาการระบบหุ่นยนต์อัจฉริยะเข้าสู่สภาพแวดล้อมที่มุ่งเน้นมนุษย์ เช่น ห้องปฏิบัติการ โรงพยาบาล และสถาบันการศึกษา มีความสำคัญมากขึ้นเนื่องจากความต้องการที่เพิ่มขึ้นสำหรับผู้ช่วยที่เข้าถึงได้และตระหนักถึงบริบท อย่างไรก็ตาม โซลูชันในปัจจุบันมักขาดความสามารถในการปรับขนาด เช่น การพึ่งพาบุคลากรเฉพาะทางเพื่อตอบคำถามเดิมซ้ำๆ ในฐานะผู้ดูแลระบบของแผนกเฉพาะ และการขาดความสามารถในการปรับตัวให้เข้ากับสภาพแวดล้อมแบบไดนามิกที่ต้องการการตอบสนองตามสถานการณ์แบบเรียลไทม์ งานวิจัยนี้นำเสนอกรอบแนวคิดใหม่สำหรับผู้ช่วยหุ่นยนต์เชิงโต้ตอบ (Beckerle et al., 2017) ที่ออกแบบมาเพื่อช่วยในระหว่างการเยี่ยมชมห้องปฏิบัติการและบรรเทาความท้าทายที่เกิดจากข้อจำกัดด้านทรัพยากรบุคคลในการให้ข้อมูลที่ครอบคลุมแก่ผู้เยี่ยมชม ระบบที่นำเสนอทำงานผ่านหลายโหมด รวมถึงโหมดสแตนด์บายและโหมดจดจำ เพื่อให้แน่ใจว่ามีการโต้ตอบที่ราบรื่นและสามารถปรับตัวได้ในบริบทต่างๆ ในโหมดสแตนด์บาย หุ่นยนต์จะแสดงสัญญาณความพร้อมผ่านแอนิเมชันใบหน้ายิ้มขณะลาดตระเวนตามเส้นทางที่กำหนดไว้ล่วงหน้าหรือประหยัดพลังงานเมื่อต้องหยุดนิ่ง การตรวจจับสิ่งกีดขวางขั้นสูงช่วยให้มั่นใจในความปลอดภัยขณะเคลื่อนที่ในสภาพแวดล้อมแบบไดนามิก ส่วนโหมดจดจำจะเปิดใช้งานผ่านท่าทางหรือคำปลุก โดยใช้เทคโนโลยีวิชันคอมพิวเตอร์ขั้นสูงและระบบรู้จำเสียงพูดแบบเรียลไทม์เพื่อตรวจจับผู้ใช้ การจดจำใบหน้าช่วยจำแนกบุคคลว่าเป็นที่รู้จักหรือไม่รู้จัก พร้อมทั้งมอบคำทักทายเฉพาะบุคคลหรือคำแนะนำตามบริบทเพื่อเพิ่มการมีส่วนร่วมของผู้ใช้ หุ่นยนต์ต้นแบบและการออกแบบ 3 มิติแสดงไว้ในรูปที่ 1 ในโหมดโต้ตอบ ระบบได้บูรณาการเทคโนโลยีขั้นสูงหลายประการ เช่น การรู้จำเสียงพูดขั้นสูง (ASR Whisper) การประมวลผลภาษาธรรมชาติ (NLP) และโมเดลภาษาขนาดใหญ่ Ollama 3.2 (LLM Predictor, 2025) เพื่อมอบประสบการณ์ที่ใช้งานง่าย รับรู้บริบท และสามารถปรับตัวได้ โดยได้รับแรงบันดาลใจจากความต้องการมีส่วนร่วมกับนักศึกษาและส่งเสริมความสนใจในภาควิชา RAI ซึ่งมีผู้เยี่ยมชมมากกว่า 1,000 คนต่อปี ระบบนี้ช่วยแก้ไขปัญหาการเข้าถึงข้อมูลในกรณีที่ไม่มีเจ้าหน้าที่มนุษย์ ด้วยการตรวจจับคำปลุก การจดจำใบหน้าและท่าทาง และการตรวจจับสิ่งกีดขวางด้วย LiDAR หุ่นยนต์จึงสามารถสื่อสารภาษาอังกฤษได้อย่างราบรื่น พร้อมทั้งนำทางอย่างปลอดภัยและมีประสิทธิภาพ ระบบปฏิสัมพันธ์แบบ Retrieval-Augmented Generation (RAG) สื่อสารกับหุ่นยนต์เคลื่อนที่ที่สร้างบน ROS1 Noetic โดยใช้โปรโตคอล MQTT ผ่านเครือข่าย Ethernet ระบบนี้เผยแพร่เป้าหมายการนำทางไปยังโมดูล move_base ใน ROS ซึ่งจัดการการนำทางและหลีกเลี่ยงสิ่งกีดขวางโดยอัตโนมัติ แผนผังอธิบายระบบแสดงไว้ในรูปที่ 2 กรอบแนวคิดนี้ประกอบด้วยสถาปัตยกรรมแบ็กเอนด์ที่แข็งแกร่ง โดยใช้ MongoDB สำหรับการจัดเก็บและดึงข้อมูล รวมถึงกลไก RAG (Thüs et al., 2024) ในการประมวลผลข้อมูลหลักสูตรในรูปแบบ PDF เพื่อให้แน่ใจว่าหุ่นยนต์สามารถให้คำตอบที่ถูกต้องและเหมาะสมกับบริบทแก่ผู้ใช้ นอกจากนี้ การใช้แอนิเมชันใบหน้ายิ้มและระบบแปลงข้อความเป็นเสียง (TTS BotNoi) ยังช่วยเพิ่มอัตราการมีส่วนร่วมของผู้ใช้ ผลลัพธ์จากการศึกษาสังเกตการณ์และแบบสำรวจพบว่าระบบมีการปรับปรุงอย่างมีนัยสำคัญในด้านความพึงพอใจของผู้ใช้และการเข้าถึงข้อมูล เอกสารฉบับนี้ยังกล่าวถึงความสามารถของหุ่นยนต์ในการทำงานในสภาพแวดล้อมแบบไดนามิกและพื้นที่ที่เน้นมนุษย์ เช่น การจัดการกับการรบกวนระหว่างปฏิบัติภารกิจ การออกแบบแบบแยกส่วนช่วยให้สามารถผสานรวมฟีเจอร์เพิ่มเติม เช่น การจดจำท่าทางและการอัปเกรดฮาร์ดแวร์ได้ง่าย ซึ่งช่วยให้ระบบสามารถขยายขีดความสามารถในระยะยาวได้ อย่างไรก็ตาม มีข้อจำกัดบางประการ เช่น ต้นทุนการติดตั้งเริ่มต้นที่สูงและการพึ่งพาการกำหนดค่าฮาร์ดแวร์เฉพาะ ในอนาคต งานวิจัยจะมุ่งเน้นไปที่การเพิ่มความสามารถในการรองรับภาษาต่างๆ การขยายกรณีการใช้งาน และการสำรวจปฏิสัมพันธ์แบบร่วมมือกันระหว่างหุ่นยนต์หลายตัว โดยสรุป ผู้ช่วยหุ่นยนต์เชิงโต้ตอบที่นำเสนอในงานวิจัยนี้เป็นก้าวสำคัญในการเชื่อมโยงความต้องการของมนุษย์เข้ากับความก้าวหน้าทางเทคโนโลยี ด้วยการผสานรวมเทคโนโลยีปัญญาประดิษฐ์ล้ำสมัยเข้ากับโซลูชันฮาร์ดแวร์ที่ใช้งานได้จริง งานวิจัยนี้จึงนำเสนอระบบที่สามารถขยายขีดความสามารถ มีประสิทธิภาพ และเป็นมิตรกับผู้ใช้ ซึ่งช่วยเพิ่มการเข้าถึงข้อมูลและการมีส่วนร่วมของผู้ใช้ในสภาพแวดล้อมที่มุ่งเน้นมนุษย์

คณะวิศวกรรมศาสตร์
ระบบไฮโดรโปนิกส์แบบควบคุมอัตโนมัติสำหรับใช้ในครัวเรือนได้รับการพัฒนาขึ้นเพื่อตอบโจทย์ผู้ที่มีพื้นที่น้อยแต่ต้องการปลูกผักสลัดเองในบ้านอย่างสะดวกและง่ายดาย ระบบนี้ออกแบบมาให้สามารถควบคุมการให้ธาตุอาหารโดยอัตโนมัติผ่านการตั้งค่าสภาพการนำไฟฟ้า (EC) และ pH ที่เหมาะสมสำหรับผักสลัดที่ต้องการปลูก มีแสงประดิษฐ์ร่วมเพื่อให้สามารถปลูกในพื้นที่จำกัดที่อาจมีแสงอาทิตย์ไม่เพียงพอได้ และยังเป็นระบบที่มีต้นทุนต่ำกว่าที่มีจำหน่ายในท้องตลาด จากการตรวจสอบระบบการควบคุมค่า EC และ pH พบว่าระบบปลูกนี้สามารถทำงานได้ดีและควบคุมการให้ธาตุอาหารจนถึงค่า EC และ pH ที่ตั้งไว้ได้ภายในเวลาไม่เกิน 30 นาที และรักษาค่าที่ตั้งไว้ได้ตลอดการเปิดทำงานของระบบ ในการทดลองปลูกผักสลัดกรีนโอ๊คโดยจำลองการตั้งระบบปลูกบริเวณระเบียง พบว่าต้นกรีนโอ๊คมีการเจริญเติบโตด้วยอัตราการเติบโตที่สูงกว่าการปลูกตามปกติ โดยเฉพาะเมื่อใช้แสงประดิษฐ์ร่วม