โครงการนี้นำหลักการของเทคโนโลยีปัญญาประดิษฐ์ และ Deep Learning มาจัดทำระบบตำรวจอัจฉริยะ (Smart Police) เพื่อวิเคราะห์อัตลักษณ์บุคคลและยานพาหนะที่ต้องสงสัยว่าเกี่ยวข้องกับการกระทำความผิดเพื่อใช้รักษาความปลอดภัยในชีวิตและทรัพย์สินของประชาชน โดยหลักการทำงานของระบบตำรวจอัจฉริยะ จะติดตั้งกล้อง CCTV ในพื้นที่ที่มีความเสี่ยงในกการโจรกรรม เพื่อตรวจจับบุคคลที่มีอำพรางอาวุธ โดยวิเคราะห์จากภาพจากกล้อง CCTV ด้วยการประมวลผลภาพและประยุกต์ใช้เทคโนโลยีปัญญาประดิษฐ์ ในการเฝ้าระวังและตรวจจับสิ่งที่อยู่ในเหตุการณ์ เมื่อมีการโจรกรรมหรือเหตุการผิดปกติ ระบบจะแจ้งเตือนเหตุการณ์เข้ามาที่ศูนย์เฝ้าระวังภายในสถานีตำรวจ เพื่อให้ตำรวจไปตรวจสอบความผิดเบื้องต้น และไปพื้นที่เกิดเหตุได้ทันเหตุการณ์เพื่อดำเนินการป้องกันหรือระงับเหตุ ในกรณีที่มีการหลบหนี ระบบจะติดตามรถยนต์ หรือ รถมอเตอร์ไซด์ พร้อมระบุเส้นทางที่สามารถใช้ในการหลบหนีโดยใช้การติดตามจากลักษณะของยานพาหนะ และป้ายทะเบียนของยานพาหนะที่ก่อเหตุ เพื่อทำการติดตามและระงับเหตุได้ ดังนั้นระบบตำรวจอัจฉริยะที่พัฒนาขึ้นเป็นการร่วมมือของคณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง, สำนักงานตำรวจภูธรภาค 2 มูลนิธิฉะเชิงเทราเพื่อการพัฒนา และสำนักงานเมืองอัจฉริยะจังหวัดฉะเชิงเทรา เพื่อป้องกันและป้องปรามการเกิดอาชญากรรม เพิ่มความปลอดภัยสาธารณะและความสงบเรียบร้อยให้แก่ประชาชนในพื้นที่จังหวัดฉะเชิงเทราซึ่งเป็นพื้นที่ในเขต EEC ซึ่งเป็นแหล่งเศรษฐกิจของประเทศ และเป็นแหล่งท่องเที่ยวใกล้กรุงเทพ และเป็นการสร้างเครือข่ายความร่วมมือทั้งภาครัฐ เอกชน และชุมชน ตลอดจนถ่ายทอดองค์ความรู้การใช้งานนวัตกรรมและการเขียนให้แก่ตำรวจและเจ้าหน้าที่ในการนำเทคโนโลยีไปใช้งานจริงและสามารถพัฒนาต่อยอดนวัตกรรมได้ใช้เอง ซึ่งเป็นการพัฒนาแบบต่อเนื่องในระยะยาวเพื่อให้เกิดความยั่งยืนและนําข้อมูลไปใช้ประโยชน์ด้านการวางแผนการดำเนินการรักษาความปลอดภัยและแผนการท่องเที่ยวของจังหวัดฉะเชิงเทรา
-
คณะเทคโนโลยีการเกษตร
นวัตกรรมชุดการเลี้ยงหอยหวานทองในแนวตั้งด้วยระบบอควาโปนิกส์เป็นรูปแบบของการเกษตรแบบผสมผสานระหว่างการเลี้ยงหอยหวานทองกับการปลูกผัก โดยระบบดังกล่าวโดยมีจุดมุ่งหมายเพื่อใช้พื้นที่ในแนวดิ่งให้เกิดประโยชน์สูงสุด ประหยัดน้ำในการเลี้ยงและผลิตพืชผักที่ปลอดภัยทั้งเพื่อการบริโภคหรือจำหน่าย รวมทั้งเป็นการเกื้อกูลระหว่างสิ่งมีชีวิตในระบบ ซึ่งหอยหวานทองจะขับถ่ายของเสียออกมา/เศษอาหารที่หลงเหลือจะถูกกรองบนวัสดุ ที่ใช้ในการบำบัดน้ำ ในขณะเดียวกันแบคทีเรียตามธรรมชาติจะช่วยเปลี่ยนของเสียต่างๆ เหล่านี้ให้อยู่ในรูปธาตุอาหารที่พืชนำมาใช้ประโยชน์ ดังนั้นระบบดังกล่าวจึงเป็นมิตรต่อต่อสิ่งแวดล้อม
คณะสถาปัตยกรรม ศิลปะและการออกแบบ
การศึกษานี้มุ่งเน้นการออกแบบ การผลิต และการติดตั้งแนวปะการังเทียมแบบแยกส่วนที่พิมพ์ด้วยเทคโนโลยี 3 มิติ (3DMARs) บริเวณเกาะไข่ จังหวัดชุมพร ประเทศไทย โดยใช้กรอบแนวคิดการคิดเชิงออกแบบ (Design Thinking) ร่วมมือกับบริษัท เอสซีจี จำกัด (มหาชน) และกรมทรัพยากรทางทะเลและชายฝั่ง งานวิจัยนี้กำหนดเกณฑ์การออกแบบและวิธีการติดตั้งโดยใช้การวิเคราะห์เนื้อหาและการวิจัยเชิงคุณภาพ หลักการสำคัญที่ระบุได้ ได้แก่ ความเป็นโมดูลาร์ (Modularity), ความยืดหยุ่น (Flexibility), ความยั่งยืนด้านสิ่งแวดล้อม (Environmental Sustainability) และการใช้งานได้จริง (Usability) โดยใช้แนวทางที่มุ่งเน้นผู้ใช้งานเพื่อให้แนวปะการังเทียมสามารถขนส่งและติดตั้งได้อย่างมีประสิทธิภาพ พร้อมทั้งส่งเสริมการมีส่วนร่วมของชุมชนท้องถิ่นและการปฏิบัติที่ยั่งยืน การออกแบบแบบโมดูลาร์ช่วยให้สามารถขยายขนาดได้ง่าย ส่งเสริมการฟื้นฟูระบบนิเวศทางทะเลและการตั้งถิ่นฐานของตัวอ่อนปะการัง นอกจากนี้ เทคนิคการติดตามผลใต้น้ำยังช่วยให้สามารถเก็บรวบรวมข้อมูลเฉพาะพื้นที่ ซึ่งนำไปสู่การสร้างแบบจำลองดิจิทัลทวิน (Digital Twin) งานวิจัยนี้นำเสนอกรอบแนวทางปฏิบัติสำหรับการฟื้นฟูระบบนิเวศทางทะเล และช่วยเสริมสร้างศักยภาพให้กับชุมชนชายฝั่งในประเทศไทยและในระดับสากล
คณะวิศวกรรมศาสตร์
ไผ่เป็นพืชเศรษฐกิจที่มีศักยภาพในการเพิ่มมูลค่าผ่านการแปรรูปเป็นถ่านชีวมวล ซึ่งสามารถนำไปใช้เป็นเชื้อเพลิงและมีประโยชน์ในหลายอุตสาหกรรม งานวิจัยนี้มีจุดประสงค์เพื่อศึกษาปัจจัยที่มีผลต่อคุณภาพของถ่านไม้ไผ่ โดยเปรียบเทียบการผลิตถ่านจากเตาเผาไม้ไผ่ต้นแบบกับเตาเผาอุตสาหกรรม วิเคราะห์ผลผลิตที่ได้และประสิทธิภาพเชิงความร้อนของแต่ละสภาวะการเผา พบว่าการทดสอบเตาเผาต้นแบบที่สภาวะที่ 3 อุณหภูมิ 500 องศาเซลเซียส ระยะเวลา 8 ชั่วโมง ให้ผลลัพธ์ใกล้เคียงกับเตาเผาอุตสาหกรรม โดยมีประสิทธิภาพเชิงความร้อนร้อยละ 37.05 และ 41.29 ตามลำดับ ถ่านชีวมวลที่ได้มีคุณภาพสูง โดยมีปริมาณคาร์บอนอินทรีย์ร้อยละ 73.92 และ 75.24 โดยน้ำหนักตามลำดับ และมีอัตราส่วนโมลของไฮโดรเจนต่อคาร์บอนอินทรีย์ 0.51 และ 0.29 ตามลำดับ ซึ่งจัดอยู่ในมาตรฐานถ่านชีวมวลระดับสูงสุด (IBI Standard) อย่างไรก็ตาม เมื่อพิจารณาความคุ้มค่าทางเศรษฐศาสตร์ พบว่าต้นทุนการผลิตยังค่อนข้างสูง จึงเหมาะสมกับผู้ที่มีชีวมวลไม้ไผ่เหลือใช้จากกิจกรรมอื่น