KMITL Innovation Expo 2025 Logo

INTELLIGENT ANTI – ROBBERY POLICE SYSTEM IN CHACHOENGSAO

INTELLIGENT  ANTI – ROBBERY  POLICE  SYSTEM  IN  CHACHOENGSAO

Abstract

The project uses artificial intelligence (AI) and deep learning to develop a smart police system (Smart Police) to analyze the identity of individuals and vehicles suspected of involvement in crimes. The system uses CCTV cameras to detect people with concealed weapons and track vehicles involved in crimes. The system also sends alerts to the police when a crime is detected. The Smart Police system is a collaboration between the Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, the Provincial Police Region 2, the Chachoengsao Foundation for Development, and the Smart City Office of Chachoengsao Province. The system is designed to prevent and deter crime, increase public safety and order, and build a network of cooperation between the government, the private sector, and the community. The system is currently under development, but it has the potential to be a valuable tool for law enforcement. The system could help to reduce crime and improve public safety in Chachoengsao Province and other parts of Thailand.

Objective

-

Other Innovations

Development of Musical Stories to enhance Executive function for children from birth to three years old

วิทยาลัยวิศวกรรมสังคีต

Development of Musical Stories to enhance Executive function for children from birth to three years old

Musical stories to enhance thinking skills of children aged 0-3 years using EF skills as a tool to enhance children development by focus on 3 basic skills. 1. Working memory 2. Inhibitory Control 3. Cognitive Flexibility

Read more
Study on the Production Process and Shelf-Life Preservation of  Plant-Based Crab Cake under Refrigerated Conditions (Lab Scale)

คณะอุตสาหกรรมอาหาร

Study on the Production Process and Shelf-Life Preservation of Plant-Based Crab Cake under Refrigerated Conditions (Lab Scale)

Plant-based refers to food or products that are primarily made from plants. It can be divided into two categories: one is food that comes entirely from plants and does not include any animal products, and the other is food that contains small amounts of animal products, such as products that contain milk and eggs in limited quantities, which may also be considered part of the definition of plant-based. Plant-based meat products that closely resemble real meat and attract consumers are considered a relatively new innovation. Although tofu, tempeh, and seitan have been around for a long time, recent discoveries have led to the production of plant-based meat products that provide a sensory experience, making it difficult for consumers to distinguish between real meat and plant-based meat. Furthermore, the development of plant-based food products must prioritize quality and safety to maximize consumer benefits. Textured Vegetable Protein (TVP) is a plant-based protein made from soybeans using an extruder. It is used as a primary ingredient in the production of plant-based food products due to several advantages. These include: • High Protein Content: TVP is made from soybeans with the fat extracted, resulting in a high protein content. • Texture: When rehydrated, TVP has a texture that closely resembles meat. • Versatility: TVP has a neutral flavor, allowing it to easily absorb the flavors of various seasonings and sauces. • Cost-Effectiveness: Compared to other protein sources, TVP is relatively inexpensive while providing desirable characteristics. These benefits make TVP an attractive option in the production of plant-based foods. This study focuses on developing TVP into a plant-based crab cake and investigating the shelf life of the product in a tightly sealed container under refrigeration. It also analyzes the hygiene and cleanliness of the production process and how these factors affect the presence or growth of microorganisms that may pose a risk to consumers, referencing the cold food safety standards of Thailand. Finally, recommendations for cleaning operational areas will be provided to establishments as a guideline for developing preliminary food safety procedures in laboratory settings.

Read more
Fabrication of a microfluidic system to simulate skin cell systems for pharmaceutical applications.

วิทยาลัยเทคโนโลยีและนวัตกรรมวัสดุ

Fabrication of a microfluidic system to simulate skin cell systems for pharmaceutical applications.

The development of skin-on-a-chip models plays a crucial role in research for drug and cosmetic development. Traditional approaches often utilize two-dimensional (2D) methods that rely on culturing cells on flat surfaces, resulting in a lack of complexity in skin structure and realistic cell interactions. Moreover, traditional methods have limitations in mimicking fluid flow and nutrient circulation, which affects the accuracy of pharmaceutical testing and the prediction of drug effects. This has led to the advancement of three-dimensional (3D) skin models using new microfluidic technology, enhancing the realism of skin structure by replicating both the epidermis and dermis layers, as well as simulating fluid flow similar to physiological conditions in the human body. The design of 3D systems allows for more realistic cell arrangement and interactions, enabling better simulation of skin functions and increasing the accuracy in evaluating the effects of various substances on cell responses, including absorption, inflammation, and wound healing. Therefore, the development of three-dimensional (3D) skin models not only addresses the limitations of traditional methods but also represents a significant step forward in creating models that can be effectively applied in drug testing and pharmaceutical product development.

Read more