รายงานฉบับนี้เป็นส่วนหนึ่งของการนำความรู้ที่ได้จากการศึกษาโมเดล Machine Learning และแนวทางการพัฒนาโมเดลทำนายลูกค้าที่มีแนวโน้มที่จะยกเลิกการใช้บริการบัตรเครดิตของธนาคารมาประยุกต์ใช้กับข้อมูลจริงในอุตสาหกรรมบัตรเครดิตของสถาบันทางการเงิน ผ่านการฝึกงานที่สถานประกอบการทางการเงินแห่งหนึ่ง ซึ่งผู้จัดทำได้ทำการพัฒนาโมเดลทำนายลูกค้าที่มีแนวโน้มที่จะยกเลิกการใช้บริการบัตรเครดิตของสถาบันทางการเงินจากข้อมูลลูกค้าจริงผ่านระบบที่สถานประกอบการใช้งาน ซึ่งมุ่งเน้นไปที่การสร้างโมเดลที่สามารถทำนายการเลิกใช้บริการของลูกค้าได้อย่างแม่นยำ โดยมีการเลือกฟีเจอร์ข้อมูลให้เหมาะสมกับโมเดลการทำนายและลักษณะเฉพาะของข้อมูลในอุตสาหกรรมบัตรเครดิต เพื่อโมเดลที่มีประสิทธิภาพและถูกต้องมากที่สุด โดยรายงานฉบับนี้ยังครอบคลุมถึงการนำโมเดลที่ได้เข้าไปเป็นส่วนหนึ่งของการการพัฒนาเว็บไซต์เพื่อช่วยให้แผนกอื่นๆที่เกี่ยวข้องสามารถใช้งานโมเดลทำนายได้อย่างสะดวก โดยผู้ใช้สามารถอัปโหลดข้อมูลสำหรับการทำนายและรับผลลัพธ์จากโมเดลได้ทันที นอกจากนี้ยังมีการสร้าง Dashboard เพื่อนำเสนอข้อมูลเชิงลึกที่เกิดจากการทำนายของโมเดล เช่น การระบุกลุ่มลูกค้าที่มีความเสี่ยงสูงในการเลิกใช้บริการ รวมถึงข้อมูลเชิงวิเคราะห์ที่มีความสำคัญต่อการตัดสินใจเชิงกลยุทธ์ ซึ่งจะช่วยสนับสนุนการวางแผนการตลาดและการรักษาลูกค้าในองค์กรได้อย่างมีประสิทธิภาพมากยิ่งขึ้น
บัตรเครดิตเป็นบริการอย่างหนึ่งทางการเงิน ช่วยอำนวยความสะดวกแก่ผู้ใช้สามารถชำระค่าสินค้าและบริการโดยไม่ต้องใช้เงินสด ธนาคารทำหน้าที่เป็นตัวกลางในการชำระเงินให้กับร้านค้า และเรียกเก็บเงินจากผู้ใช้บัตรในภายหลัง บัตรเครดิตของแต่ละธนาคารจึงได้รับความนิยมอย่างรวดเร็วในประเทศไทย ส่งผลให้มีการแข่งขันสูง ธนาคารต้องพัฒนากลยุทธ์เพื่อดึงดูด และรักษาลูกค้าไว้ ในการทำธุรกิจ การสูญเสียลูกค้าถือเป็นปัญหาสำคัญที่ส่งผลกระทบต่อธุรกิจทุกประเภท โดยบัตรเครดิตของธนาคารถือเป็นอีกหนึ่งธุรกิจที่ได้รับผลกระทบจากการสูญเสียลูกค้าค่อนข้างมาก เนื่องจากการเติบโตมาจากผู้ใช้บัตรเป็นหลัก ส่งผลให้ลูกค้าบัตรเครดิตมีมูลค่าสูงและสามารถสร้างรายได้ให้กับธนาคารอย่างต่อเนื่อง ธนาคารจึงจำเป็นต้องหาแนวทางและวิธีป้องกันเพื่อรักษาไม่ให้ลูกค้ายกเลิกการใช้บริการ โดยการทำนายลักษณะลูกค้าที่มีแนวโน้มจะยกเลิกการใช้บริการบัตรเครดิตเป็นแนวทางหนึ่งที่สามารถช่วยธนาคารในการแก้ไขปัญหานี้ได้ การทำนายลักษณะลูกค้าที่กำลังจะยกเลิกการใช้บริการบัตรเครดิตสามารถทำได้โดยใช้ Machine Learning Model ซึ่งสามารถวิเคราะห์ข้อมูลจำนวนมากและหาความสัมพันธ์ของข้อมูลที่ซับซ้อน ทำให้องค์กรได้รับข้อมูลเชิงลึกที่เป็นประโยชน์ในการใช้วิเคราะห์และประกอบการตัดสินใจเพื่อหาแนวทางและกลยุทธ์ที่เหมาะสมที่สุดในการรักษาและป้องกันการสูญเสียลูกค้าเพื่อรักษารายได้และเสถียรภาพขององค์กรไว้
คณะวิศวกรรมศาสตร์
การบูรณาการระบบหุ่นยนต์อัจฉริยะเข้าสู่สภาพแวดล้อมที่มุ่งเน้นมนุษย์ เช่น ห้องปฏิบัติการ โรงพยาบาล และสถาบันการศึกษา มีความสำคัญมากขึ้นเนื่องจากความต้องการที่เพิ่มขึ้นสำหรับผู้ช่วยที่เข้าถึงได้และตระหนักถึงบริบท อย่างไรก็ตาม โซลูชันในปัจจุบันมักขาดความสามารถในการปรับขนาด เช่น การพึ่งพาบุคลากรเฉพาะทางเพื่อตอบคำถามเดิมซ้ำๆ ในฐานะผู้ดูแลระบบของแผนกเฉพาะ และการขาดความสามารถในการปรับตัวให้เข้ากับสภาพแวดล้อมแบบไดนามิกที่ต้องการการตอบสนองตามสถานการณ์แบบเรียลไทม์ งานวิจัยนี้นำเสนอกรอบแนวคิดใหม่สำหรับผู้ช่วยหุ่นยนต์เชิงโต้ตอบ (Beckerle et al., 2017) ที่ออกแบบมาเพื่อช่วยในระหว่างการเยี่ยมชมห้องปฏิบัติการและบรรเทาความท้าทายที่เกิดจากข้อจำกัดด้านทรัพยากรบุคคลในการให้ข้อมูลที่ครอบคลุมแก่ผู้เยี่ยมชม ระบบที่นำเสนอทำงานผ่านหลายโหมด รวมถึงโหมดสแตนด์บายและโหมดจดจำ เพื่อให้แน่ใจว่ามีการโต้ตอบที่ราบรื่นและสามารถปรับตัวได้ในบริบทต่างๆ ในโหมดสแตนด์บาย หุ่นยนต์จะแสดงสัญญาณความพร้อมผ่านแอนิเมชันใบหน้ายิ้มขณะลาดตระเวนตามเส้นทางที่กำหนดไว้ล่วงหน้าหรือประหยัดพลังงานเมื่อต้องหยุดนิ่ง การตรวจจับสิ่งกีดขวางขั้นสูงช่วยให้มั่นใจในความปลอดภัยขณะเคลื่อนที่ในสภาพแวดล้อมแบบไดนามิก ส่วนโหมดจดจำจะเปิดใช้งานผ่านท่าทางหรือคำปลุก โดยใช้เทคโนโลยีวิชันคอมพิวเตอร์ขั้นสูงและระบบรู้จำเสียงพูดแบบเรียลไทม์เพื่อตรวจจับผู้ใช้ การจดจำใบหน้าช่วยจำแนกบุคคลว่าเป็นที่รู้จักหรือไม่รู้จัก พร้อมทั้งมอบคำทักทายเฉพาะบุคคลหรือคำแนะนำตามบริบทเพื่อเพิ่มการมีส่วนร่วมของผู้ใช้ หุ่นยนต์ต้นแบบและการออกแบบ 3 มิติแสดงไว้ในรูปที่ 1 ในโหมดโต้ตอบ ระบบได้บูรณาการเทคโนโลยีขั้นสูงหลายประการ เช่น การรู้จำเสียงพูดขั้นสูง (ASR Whisper) การประมวลผลภาษาธรรมชาติ (NLP) และโมเดลภาษาขนาดใหญ่ Ollama 3.2 (LLM Predictor, 2025) เพื่อมอบประสบการณ์ที่ใช้งานง่าย รับรู้บริบท และสามารถปรับตัวได้ โดยได้รับแรงบันดาลใจจากความต้องการมีส่วนร่วมกับนักศึกษาและส่งเสริมความสนใจในภาควิชา RAI ซึ่งมีผู้เยี่ยมชมมากกว่า 1,000 คนต่อปี ระบบนี้ช่วยแก้ไขปัญหาการเข้าถึงข้อมูลในกรณีที่ไม่มีเจ้าหน้าที่มนุษย์ ด้วยการตรวจจับคำปลุก การจดจำใบหน้าและท่าทาง และการตรวจจับสิ่งกีดขวางด้วย LiDAR หุ่นยนต์จึงสามารถสื่อสารภาษาอังกฤษได้อย่างราบรื่น พร้อมทั้งนำทางอย่างปลอดภัยและมีประสิทธิภาพ ระบบปฏิสัมพันธ์แบบ Retrieval-Augmented Generation (RAG) สื่อสารกับหุ่นยนต์เคลื่อนที่ที่สร้างบน ROS1 Noetic โดยใช้โปรโตคอล MQTT ผ่านเครือข่าย Ethernet ระบบนี้เผยแพร่เป้าหมายการนำทางไปยังโมดูล move_base ใน ROS ซึ่งจัดการการนำทางและหลีกเลี่ยงสิ่งกีดขวางโดยอัตโนมัติ แผนผังอธิบายระบบแสดงไว้ในรูปที่ 2 กรอบแนวคิดนี้ประกอบด้วยสถาปัตยกรรมแบ็กเอนด์ที่แข็งแกร่ง โดยใช้ MongoDB สำหรับการจัดเก็บและดึงข้อมูล รวมถึงกลไก RAG (Thüs et al., 2024) ในการประมวลผลข้อมูลหลักสูตรในรูปแบบ PDF เพื่อให้แน่ใจว่าหุ่นยนต์สามารถให้คำตอบที่ถูกต้องและเหมาะสมกับบริบทแก่ผู้ใช้ นอกจากนี้ การใช้แอนิเมชันใบหน้ายิ้มและระบบแปลงข้อความเป็นเสียง (TTS BotNoi) ยังช่วยเพิ่มอัตราการมีส่วนร่วมของผู้ใช้ ผลลัพธ์จากการศึกษาสังเกตการณ์และแบบสำรวจพบว่าระบบมีการปรับปรุงอย่างมีนัยสำคัญในด้านความพึงพอใจของผู้ใช้และการเข้าถึงข้อมูล เอกสารฉบับนี้ยังกล่าวถึงความสามารถของหุ่นยนต์ในการทำงานในสภาพแวดล้อมแบบไดนามิกและพื้นที่ที่เน้นมนุษย์ เช่น การจัดการกับการรบกวนระหว่างปฏิบัติภารกิจ การออกแบบแบบแยกส่วนช่วยให้สามารถผสานรวมฟีเจอร์เพิ่มเติม เช่น การจดจำท่าทางและการอัปเกรดฮาร์ดแวร์ได้ง่าย ซึ่งช่วยให้ระบบสามารถขยายขีดความสามารถในระยะยาวได้ อย่างไรก็ตาม มีข้อจำกัดบางประการ เช่น ต้นทุนการติดตั้งเริ่มต้นที่สูงและการพึ่งพาการกำหนดค่าฮาร์ดแวร์เฉพาะ ในอนาคต งานวิจัยจะมุ่งเน้นไปที่การเพิ่มความสามารถในการรองรับภาษาต่างๆ การขยายกรณีการใช้งาน และการสำรวจปฏิสัมพันธ์แบบร่วมมือกันระหว่างหุ่นยนต์หลายตัว โดยสรุป ผู้ช่วยหุ่นยนต์เชิงโต้ตอบที่นำเสนอในงานวิจัยนี้เป็นก้าวสำคัญในการเชื่อมโยงความต้องการของมนุษย์เข้ากับความก้าวหน้าทางเทคโนโลยี ด้วยการผสานรวมเทคโนโลยีปัญญาประดิษฐ์ล้ำสมัยเข้ากับโซลูชันฮาร์ดแวร์ที่ใช้งานได้จริง งานวิจัยนี้จึงนำเสนอระบบที่สามารถขยายขีดความสามารถ มีประสิทธิภาพ และเป็นมิตรกับผู้ใช้ ซึ่งช่วยเพิ่มการเข้าถึงข้อมูลและการมีส่วนร่วมของผู้ใช้ในสภาพแวดล้อมที่มุ่งเน้นมนุษย์
คณะเทคโนโลยีการเกษตร
-
คณะเทคโนโลยีการเกษตร
สารปฏิชีวนะ (Antibiotic) ถูกใช้กันอย่างแพร่หลายในระบบการผลิตปศุสัตว์ โดยมีวัตถุประสงค์เพื่อกระตุ้นภูมิคุมกัน เพิ่มประสิทธิภาพการย่อยและดูดซึมโภชนะ กระตุ้นการเจริญเติบโต ปรับสมดุลของระบบทางเดินอาหาร และลดการเกิดการติดเชื้อก่อโรค โดยเฉพาะกลุ่มที่ก่อให้เกิดโรคท้องเสีย เป็นต้น นอกจากนั้น สารปฏิชีวนะยังมีส่วนช่วยในเรื่องของผลตอบแทนทางเศรฐกิจอีกด้วย แต่อย่างไรก็ตาม การใช้สารปฏิชีวนะที่ไม่ถูกวิธีก่อให้เกิดปัญหาเรื่องการตกค้างของสารปฏิชีวนะในผลิตภัณฑ์ การดื้อยาในสัตว์และผู้บริโภค ด้วยเหตุนี้หลายประเทศห้ามไม่ให้ใช้ยาปฏิชีวนะเป็นสารเร่งการเจริญเติบโต เช่น สหภาพยุโรป ประเทศญี่ปุ่น และยังมีอีกหลายๆ ประเทศที่มีการวางแผนที่จะห้ามไม่ให้มีการใช้ยาปฏิชีวนะในอาหารสัตว์ เช่น ประเทศจีน และสหรัฐอเมริกา เป็นต้น ในขณะที่ประเทศไทยได้มีประกาศควบคุมการใช้ยาปฏิชีวนะในอาหารสัตว์โดยมีผลบังคับใช้ทั้งระดับโรงงานผลิตอาหารสัตว์ และฟาร์มที่ผสมอาหารสัตว์ใช้เองตั้งแต่วันที่ 26 กันยายน พ.ศ. 2563 ดังนั้น การทดแทนการใช้สารปฏิชีวนะด้วย Probiotic ถือว่าเป็นการแก้ปัญหาได้เป็นอย่างดี ในการศึกษาครั้งนี้ ได้ทำการศึกษาเชื้อ Lactic acid bacteria ที่มีอยู่ในระบบทางเดินอาหารของไก่เนื้อ สุกร และโคเนื้อ ที่มีคุณสมบัติเป็น Probiotic ที่มีความเหมาะสมต่อการใช้ในสภาพแวดล้อมของประเทศไทย เพื่อใช้เป็นเชื่อต้นแบบทดแทนการนำเข้าผลิตภัณฑ์ Probiotic กลุ่ม Lactic acid bacteria จากต่างประเทศที่มักจะประสบปัญหาเรื่องอัตราการรอดชีวิตเมื่อนำไปใช้จริง