KMITL Innovation Expo 2025 Logo

Development of Credit Card Customer Churn Prediction Model

Abstract

This report is part of applying the knowledge gained from studying machine learning models and methods for developing a predictive model to identify customers likely to cancel their credit card services with a bank. The project was carried out during an internship at a financial institution, where the creator developed a model to predict customers likely to churn from their credit card services using real customer data through the organization's system. The focus was on building a model that can accurately predict customer churn by selecting features that are appropriate for the prediction model and the unique characteristics of the credit card industry data to ensure the highest possible accuracy and efficiency. This report also covers the integration of the model into the development of a website, which allows related departments to conveniently use the prediction model. Users can upload data for prediction and receive model results instantly. In addition, a dashboard has been created to present insights from the model's predictions, such as identifying high-risk customers likely to cancel services, as well as other important analytical information for strategic decision-making. This will help support more efficient marketing planning and customer retention efforts within the organization.

Objective

บัตรเครดิตเป็นบริการอย่างหนึ่งทางการเงิน ช่วยอำนวยความสะดวกแก่ผู้ใช้สามารถชำระค่าสินค้าและบริการโดยไม่ต้องใช้เงินสด ธนาคารทำหน้าที่เป็นตัวกลางในการชำระเงินให้กับร้านค้า และเรียกเก็บเงินจากผู้ใช้บัตรในภายหลัง บัตรเครดิตของแต่ละธนาคารจึงได้รับความนิยมอย่างรวดเร็วในประเทศไทย ส่งผลให้มีการแข่งขันสูง ธนาคารต้องพัฒนากลยุทธ์เพื่อดึงดูด และรักษาลูกค้าไว้ ในการทำธุรกิจ การสูญเสียลูกค้าถือเป็นปัญหาสำคัญที่ส่งผลกระทบต่อธุรกิจทุกประเภท โดยบัตรเครดิตของธนาคารถือเป็นอีกหนึ่งธุรกิจที่ได้รับผลกระทบจากการสูญเสียลูกค้าค่อนข้างมาก เนื่องจากการเติบโตมาจากผู้ใช้บัตรเป็นหลัก ส่งผลให้ลูกค้าบัตรเครดิตมีมูลค่าสูงและสามารถสร้างรายได้ให้กับธนาคารอย่างต่อเนื่อง ธนาคารจึงจำเป็นต้องหาแนวทางและวิธีป้องกันเพื่อรักษาไม่ให้ลูกค้ายกเลิกการใช้บริการ โดยการทำนายลักษณะลูกค้าที่มีแนวโน้มจะยกเลิกการใช้บริการบัตรเครดิตเป็นแนวทางหนึ่งที่สามารถช่วยธนาคารในการแก้ไขปัญหานี้ได้ การทำนายลักษณะลูกค้าที่กำลังจะยกเลิกการใช้บริการบัตรเครดิตสามารถทำได้โดยใช้ Machine Learning Model ซึ่งสามารถวิเคราะห์ข้อมูลจำนวนมากและหาความสัมพันธ์ของข้อมูลที่ซับซ้อน ทำให้องค์กรได้รับข้อมูลเชิงลึกที่เป็นประโยชน์ในการใช้วิเคราะห์และประกอบการตัดสินใจเพื่อหาแนวทางและกลยุทธ์ที่เหมาะสมที่สุดในการรักษาและป้องกันการสูญเสียลูกค้าเพื่อรักษารายได้และเสถียรภาพขององค์กรไว้

Other Innovations

Detection of salivary biomarker  for migraine diagnosis

คณะแพทยศาสตร์

Detection of salivary biomarker for migraine diagnosis

Migraine, a prevalent neurological disorder, is the third most common disease globally, causing significant health and financial burdens. It has four stages: prodrome, aura, headache, and postdrome. The prodrome (also known as premonitory) stage is crucial as it precedes the headache by up to 72 hours. Taking medication during the premonitory peroid has shown to prevent the headache phase . However, the symptoms of premonitory period lack specificity, making it difficult for patients to know if they’re experiencing premonitory symptoms. Calcitonin-gene related peptide (cGRP),is a protein that plays a key role in migraine pathogenesis and studies found that salivary cGRP levels increase during the premonitory stage. This study aims to develop and evaluate a lateral flow immunoassay kit for detecting salivary cGRP levels in migraine patients during the prodrome stage. It can serve as a confirmation tool for premonitory symptoms.

Read more
Development of high protein Jasmin-rice coated with rice protein isolate

คณะอุตสาหกรรมอาหาร

Development of high protein Jasmin-rice coated with rice protein isolate

In the development of high protein jasmine rice products, hydrocolloids, HPMC at 0, 0.25, 0.5 and 1% w/v and MD at 10% w/v were used. This hydrocolloid contained 30% w/v dissolved protein and was coated with raw jasmine rice. It was found that different amounts of HPMC affected the adhesion of proteins in rice. Then, the hydrocolloid with the best adhesion, 0.25% w/v, was used to find the optimum amount for coating rice at ratios of 1:3 and 1:5, which affected protein content, texture, color, water retention and sensory acceptability.

Read more
Diabetes Meal Management Application

คณะวิศวกรรมศาสตร์

Diabetes Meal Management Application

The Diabetes Meal Management Application is a digital health tool designed to empower Type 2 diabetic patients in managing their diet and blood sugar levels more effectively. With features like personalized meal recommendations, nutrient tracking, and seamless integration with wearable blood glucose monitors via Blood sugar measuring device (CGM), the application enables users to monitor glucose fluctuations in real time and adjust dietary choices accordingly. Built with the Flutter framework and supported by a backend of Express.js and MongoDB, the application prioritizes a user-friendly interface, ensuring easy navigation and encouraging consistent engagement with meal planning and health tracking. Preliminary user trials show that the application contributes to more stable blood sugar levels and improved adherence to dietary recommendations, helping users reduce health risks associated with diabetes complications. By offering a proactive approach to diabetes management, the application reduces the need for frequent clinical interventions, thus potentially lowering medical costs over time. This project highlights the promising role of digital health solutions in supporting personalized diabetes care, emphasizing the potential for scalable, user-centered interventions that foster long-term health improvements for diabetic patients.

Read more