KMITL Innovation Expo 2025 Logo

Development of Credit Card Customer Churn Prediction Model

Abstract

This report is part of applying the knowledge gained from studying machine learning models and methods for developing a predictive model to identify customers likely to cancel their credit card services with a bank. The project was carried out during an internship at a financial institution, where the creator developed a model to predict customers likely to churn from their credit card services using real customer data through the organization's system. The focus was on building a model that can accurately predict customer churn by selecting features that are appropriate for the prediction model and the unique characteristics of the credit card industry data to ensure the highest possible accuracy and efficiency. This report also covers the integration of the model into the development of a website, which allows related departments to conveniently use the prediction model. Users can upload data for prediction and receive model results instantly. In addition, a dashboard has been created to present insights from the model's predictions, such as identifying high-risk customers likely to cancel services, as well as other important analytical information for strategic decision-making. This will help support more efficient marketing planning and customer retention efforts within the organization.

Objective

บัตรเครดิตเป็นบริการอย่างหนึ่งทางการเงิน ช่วยอำนวยความสะดวกแก่ผู้ใช้สามารถชำระค่าสินค้าและบริการโดยไม่ต้องใช้เงินสด ธนาคารทำหน้าที่เป็นตัวกลางในการชำระเงินให้กับร้านค้า และเรียกเก็บเงินจากผู้ใช้บัตรในภายหลัง บัตรเครดิตของแต่ละธนาคารจึงได้รับความนิยมอย่างรวดเร็วในประเทศไทย ส่งผลให้มีการแข่งขันสูง ธนาคารต้องพัฒนากลยุทธ์เพื่อดึงดูด และรักษาลูกค้าไว้ ในการทำธุรกิจ การสูญเสียลูกค้าถือเป็นปัญหาสำคัญที่ส่งผลกระทบต่อธุรกิจทุกประเภท โดยบัตรเครดิตของธนาคารถือเป็นอีกหนึ่งธุรกิจที่ได้รับผลกระทบจากการสูญเสียลูกค้าค่อนข้างมาก เนื่องจากการเติบโตมาจากผู้ใช้บัตรเป็นหลัก ส่งผลให้ลูกค้าบัตรเครดิตมีมูลค่าสูงและสามารถสร้างรายได้ให้กับธนาคารอย่างต่อเนื่อง ธนาคารจึงจำเป็นต้องหาแนวทางและวิธีป้องกันเพื่อรักษาไม่ให้ลูกค้ายกเลิกการใช้บริการ โดยการทำนายลักษณะลูกค้าที่มีแนวโน้มจะยกเลิกการใช้บริการบัตรเครดิตเป็นแนวทางหนึ่งที่สามารถช่วยธนาคารในการแก้ไขปัญหานี้ได้ การทำนายลักษณะลูกค้าที่กำลังจะยกเลิกการใช้บริการบัตรเครดิตสามารถทำได้โดยใช้ Machine Learning Model ซึ่งสามารถวิเคราะห์ข้อมูลจำนวนมากและหาความสัมพันธ์ของข้อมูลที่ซับซ้อน ทำให้องค์กรได้รับข้อมูลเชิงลึกที่เป็นประโยชน์ในการใช้วิเคราะห์และประกอบการตัดสินใจเพื่อหาแนวทางและกลยุทธ์ที่เหมาะสมที่สุดในการรักษาและป้องกันการสูญเสียลูกค้าเพื่อรักษารายได้และเสถียรภาพขององค์กรไว้

Other Innovations

Organic fertilizer products from horse manure

วิทยาลัยการจัดการนวัตกรรมและอุตสาหกรรม

Organic fertilizer products from horse manure

This research aims to study the waste management process of horse manure, the production process of organic fertilizer from horse waste, and opinions on the use of innovative organic fertilizer from horse manure. A mixed-method approach, combining qualitative and quantitative research, is employed. The organic fertilizer is produced from horse manure, which is a waste that incurs disposal costs. Through the fermentation process, it is transformed into an environmentally friendly fertilizer containing essential nutrients beneficial to plants. According to the laboratory analysis of the organic fertilizer conducted by the Soil Science Laboratory, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, it was found that organic fertilizer from horse manure contains essential nutrients for plant growth, including macronutrients, secondary nutrients, and micronutrients. This reflects the potential of horse waste management, the production process of organic fertilizer from horse manure, the efficiency of the organic fertilizer, and strategies for adding value to expand its commercialization.

Read more
Improving surface water quality via coagulation using Moringa, Roselle, and Tamarind seed extract.

คณะวิทยาศาสตร์

Improving surface water quality via coagulation using Moringa, Roselle, and Tamarind seed extract.

This study aimed to investigate the effectiveness of extracts from moringa seeds, roselle seeds, and tamarind seeds as coagulants to improve water quality in surface water sources. Extracts from these seeds serve as environmentally friendly coagulants and provide alternative options for enhancing surface water quality. The turbidity of surface water sources ranged between 14 and 24 NTU. The coagulation process used the Jar Test method, where the moringa seed, roselle seed, and tamarind seed extracts functioned as both primary coagulants and coagulant aids. In the preparation process, the seeds were finely ground and extracted using a 0.5-M sodium chloride (NaCl) solution. These extracts were then applied as coagulants to reduce turbidity and enhance water quality, with each concentration tested in 300 ml of water. The results indicated that the most effective way to remove turbidity using 2,000 mg/L of moringa seed extract, achieving a turbidity reduction of approximately 73.19% at a cost of 0.0309 baht per 300 ml of water. Followed by Tamarind seed extract, with a concentration of 4,000 mg/L, followed with a turbidity reduction of approximately 56.75% at a cost of 0.0933 baht per 300 ml. Lastly, roselle seed extract at 6,000 mg/L achieved a turbidity reduction of approximately 32.67% at a cost of 0.0567 baht per 300 ml of water.

Read more
Solar Panel Dust Monitoring System

คณะวิทยาศาสตร์

Solar Panel Dust Monitoring System

The current residential solar panels lack an adequate monitoring system, which hinders their optimal utilization. This research aims to design an Internet of Things (IoT) monitoring system and employ machine learning techniques to predict the current and voltage generated by solar panels. Experimental studies have revealed a correlation between dust accumulation and the current output of solar panels. The proposed system facilitates the prediction of the optimal time for cleaning solar panels.

Read more