KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

การพัฒนาวัสดุเส้นใยนาโนคาร์บอนคอมโพสิทเป็นตัวเก็บประจุยิ่งยวดสำหรับกักเก็บพลังงาน

การพัฒนาวัสดุเส้นใยนาโนคาร์บอนคอมโพสิทเป็นตัวเก็บประจุยิ่งยวดสำหรับกักเก็บพลังงาน

รายละเอียด

งานวิจัยนี้นำเสนอการพัฒนาเส้นใยนาโนคาร์บอนที่มีโครงสร้างหลายเฟสผสมออกไซด์ของโลหะ (CNF@MOx; M = Ag, Mn, Bi, Fe) โดยฝังอนุภาคนาโนของเงิน แมงกานีส บิสมัท และเหล็ก ลงในเส้นใยนาโนคาร์บอนที่ได้จากพอลิอะคริโลไนไตรล์ (PAN) ผ่านเทคนิคอิเล็กโทรสปินนิ่งและผ่านการอบชุบในบรรยากาศอาร์กอน ผลลัพธ์แสดงให้เห็นว่าเส้นใยนาโนที่ได้มีโครงสร้างที่เป็นระเบียบ เส้นผ่านศูนย์กลางเฉลี่ย 559-830 นาโนเมตร และมีอนุภาคนาโนฝังตัวขนาด 9-21 นาโนเมตร การวิเคราะห์เชิงโครงสร้างยืนยันการมีอยู่ของสถานะออกซิเดชันต่างๆ ของโลหะออกไซด์ ซึ่งมีบทบาทสำคัญในกลไกการเก็บประจุไฟฟ้า ผลการทดสอบทางไฟฟ้าเคมีพบว่า CNF@Ag/Mn/Bi/Fe-20 มีค่าความจุจำเพาะสูงสุดที่ 156 F g⁻¹ ที่อัตราการสแกน 2 mV s⁻¹ และมีเสถียรภาพสูง โดยยังคงค่าความจุได้มากกว่า 96% หลังจากการชาร์จ-คายประจุ 1400 รอบ กลไกการเก็บประจุของเส้นใยนี้เกิดจากการทำงานร่วมกันระหว่างความสามารถในการเก็บประจุแบบชั้นคู่ไฟฟ้าและกระบวนการรีดอกซ์ ซึ่งช่วยเพิ่มประสิทธิภาพของวัสดุอิเล็กโทรดสำหรับตัวเก็บประจุยิ่งยวด

วัตถุประสงค์

ในปัจจุบัน ความต้องการใช้พลังงานสะอาดและเทคโนโลยีการเก็บพลังงานที่มีประสิทธิภาพสูงเพิ่มขึ้นอย่างต่อเนื่อง เนื่องจากแหล่งพลังงานดั้งเดิม เช่น น้ำมันและถ่านหิน มีข้อจำกัดด้านทรัพยากรและก่อให้เกิดผลกระทบต่อสิ่งแวดล้อม ตัวเก็บประจุยิ่งยวด (Supercapacitor) ได้รับความสนใจอย่างมากในฐานะอุปกรณ์เก็บพลังงานที่มีความสามารถในการชาร์จ-คายประจุได้อย่างรวดเร็ว อายุการใช้งานยาวนาน และมีเสถียรภาพสูง อย่างไรก็ตาม ข้อจำกัดหลักของตัวเก็บประจุยิ่งยวดในปัจจุบันคือความสามารถในการเก็บพลังงานที่ต่ำเมื่อเทียบกับแบตเตอรี่ ทำให้เกิดความจำเป็นในการพัฒนาวัสดุอิเล็กโทรดที่มีประสิทธิภาพสูงขึ้น โครงงานนี้มุ่งเน้นการพัฒนา เส้นใยนาโนคาร์บอนผสมออกไซด์ของโลหะหลายเฟส (CNF@MOx; M = Ag, Mn, Bi, Fe) โดยใช้เทคนิคอิเล็กโทรสปินนิ่งและกระบวนการแคลไซน์ เพื่อเพิ่มความสามารถในการเก็บประจุของตัวเก็บประจุยิ่งยวด วัสดุที่ได้มีศักยภาพในการรวมกลไกการเก็บพลังงานแบบชั้นคู่ไฟฟ้า (Electric Double Layer Capacitance; EDLC) และกระบวนการรีดอกซ์ (Pseudocapacitance) ซึ่งช่วยเพิ่มค่าความจุจำเพาะและประสิทธิภาพของตัวเก็บประจุ เหตุผลที่ทำโครงการนี้ 1. ตอบสนองต่อความต้องการเทคโนโลยีการเก็บพลังงานที่มีประสิทธิภาพสูง – การพัฒนาตัวเก็บประจุยิ่งยวดที่สามารถเก็บพลังงานได้มากขึ้น จะช่วยให้สามารถนำไปใช้งานในอุปกรณ์อิเล็กทรอนิกส์และระบบพลังงานหมุนเวียนได้ดีขึ้น 2. การพัฒนาวัสดุอิเล็กโทรดที่มีต้นทุนต่ำและมีประสิทธิภาพสูง – วัสดุที่พัฒนาขึ้นในโครงการนี้ใช้เส้นใยนาโนคาร์บอนร่วมกับโลหะออกไซด์ ซึ่งเป็นวัสดุที่มีต้นทุนต่ำและสามารถผลิตได้ในปริมาณมาก 3. เพิ่มขีดความสามารถในการแข่งขันของเทคโนโลยีตัวเก็บประจุยิ่งยวด – การปรับปรุงคุณสมบัติของวัสดุอิเล็กโทรดจะช่วยให้ตัวเก็บประจุยิ่งยวดสามารถแข่งขันกับแบตเตอรี่ลิเธียมไอออนได้ดีขึ้นในแง่ของประสิทธิภาพและอายุการใช้งาน 4. มีศักยภาพในการประยุกต์ใช้ในอุตสาหกรรมพลังงานและอิเล็กทรอนิกส์ – วัสดุที่พัฒนาขึ้นสามารถนำไปใช้ในระบบกักเก็บพลังงาน หม้อแปลงไฟฟ้า อุปกรณ์อิเล็กทรอนิกส์ และยานยนต์ไฟฟ้า โครงการนี้จึงมีความสำคัญอย่างยิ่งในการช่วยพัฒนาเทคโนโลยีตัวเก็บประจุยิ่งยวดและส่งเสริมการใช้พลังงานสะอาดที่มีประสิทธิภาพมากขึ้น

นวัตกรรมอื่น ๆ

กระแสแห่งชน

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

กระแสแห่งชน

แบบจำลองเชิงแนวคิด (conceptual model) ที่ได้แรงบันดาลใจมาจากแนวคิด Form follows function และความเรียบง่ายของสถาปัตยกรรมสมัยใหม่ (Modern Architecture) โดยออกแบบเป็นผลงานสามมิติที่ลดทอนมาจากรูปทรงของเก้าอี้เพื่อสื่อถึงการใช้งาน เน้นความเรียบง่ายด้วยเส้น ระนาบ และรูปทรงเรขาคณิต แสดงถึงความงามที่เกิดจากการทำงานร่วมกันระหว่างประโยชน์ใช้สอยและรูปทรงที่เรียบง่ายดังเช่นแนวคิดของสถาปัตยกรรมสมัยใหม่

ไร้การกระทำ

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

ไร้การกระทำ

งานชิ้นนี้ได้ถูกสร้างขึ้นภายใต้แนวคิดหลักของสภาวะโลกร้อนและโลกหลังยุคล่มสลาย ที่ได้ส่งผลกระทบให้ระบบนิเวศเกิดการแทรกแซงและความวุ่นวาย และการดำรงอยู่ของหลายๆสิ่งมีชีวิตบนโลกต้องสูญหายไป ซึ่งเกิดจากการกระทำของมนุษย์ การแก้ไขและซ่อมแซมโลกใบนี้จึงอาจเป็นความหวังที่ไม่อาจเกิดขึ้นจริง เชื่อมโยงกับประสบการณ์ส่วนตัวของข้าพเจ้าที่ต้องสูญเสียสิ่งที่รัก และความทุกข์จากการตั้งความหวังที่ยิ่งใหญ่ ผ่านกระบวนการศิลปะโดยใช้สื่อ Animation Art และ Sound art

การศึกษาอัตราส่วนที่เหมาะสมของขิง ปลีกล้วย และกระเจี๊ยบในการห่อหุ้มลิโพโซมเพื่อเพิ่มประสิทธิภาพของคุณสมบัติต้านอนุมูลอิสระและปริมาณสารฟีนอลิก

คณะอุตสาหกรรมอาหาร

การศึกษาอัตราส่วนที่เหมาะสมของขิง ปลีกล้วย และกระเจี๊ยบในการห่อหุ้มลิโพโซมเพื่อเพิ่มประสิทธิภาพของคุณสมบัติต้านอนุมูลอิสระและปริมาณสารฟีนอลิก

ปัจจุบันการบริโภคอาหารที่มีฤทธิ์ต้านอนุมูลอิสระได้รับความสนใจมากขึ้น เนื่องจากสามารถช่วยลดความเสี่ยงในการเกิดโรคเรื้อรัง เช่น โรคมะเร็ง โรคหัวใจ และภาวะเสื่อมของเซลล์ ขิง (Zingiber officinale) ปลีกล้วย (Musa paradisiaca L.) และกระเจี๊ยบ (Hibiscus sabdariffa L.) เป็นพืชสมุนไพรที่มีสารประกอบฟีนอลิกสูง ซึ่งเป็นสารสำคัญที่มีบทบาทในการต้านอนุมูลอิสระ อย่างไรก็ตาม สารสำคัญจากพืชเหล่านี้มักมีข้อจำกัดด้านความคงตัวเมื่อสัมผัสกับแสง อุณหภูมิ และออกซิเจน ส่งผลให้ประสิทธิภาพลดลง งานวิจัยนี้มุ่งเน้นการศึกษาอัตราส่วนที่เหมาะสมของขิง ปลีกล้วย และกระเจี๊ยบ ในการกักเก็บด้วยลิโพโซม ซึ่งเป็นเทคนิคการห่อหุ้มสารสำคัญที่ช่วยเพิ่มความคงตัวของสารออกฤทธิ์และเพิ่มประสิทธิภาพในการนำส่งสารเข้าสู่ร่างกาย การศึกษานี้ดำเนินการโดยวิเคราะห์ฤทธิ์ต้านอนุมูลอิสระของสารสกัดจากขิง ปลีกล้วย และกระเจี๊ยบ ด้วยวิธี DPPH, ABTS และ FRAP รวมถึงการวัดปริมาณสารฟีนอลิกรวม (Total Phenolic Content, TPC) จากนั้นเลือกอัตราส่วนที่มีฤทธิ์ต้านอนุมูลอิสระสูงสุดมาทำการห่อหุ้มด้วยลิโพโซม โดยใช้ฟอสโฟลิปิดเป็นองค์ประกอบหลักของโครงสร้างลิโพโซม จากนั้นวิเคราะห์ประสิทธิภาพของลิโพโซมในการกักเก็บสารสำคัญผ่านการคำนวณค่า Encapsulation Efficiency (EE%) เพื่อตรวจสอบประสิทธิภาพการห่อหุ้ม ผลการวิจัยคาดว่าจะช่วยระบุอัตราส่วนที่เหมาะสมของขิง ปลีกล้วย และกระเจี๊ยบที่สามารถเพิ่มฤทธิ์ต้านอนุมูลอิสระสูงสุด และทำให้สารสำคัญมีความคงตัวมากขึ้นเมื่อผ่านกระบวนการห่อหุ้มด้วยลิโพโซม ซึ่งเป็นแนวทางสำคัญในการพัฒนาผลิตภัณฑ์เสริมสุขภาพจากสมุนไพรที่สามารถรักษาคุณสมบัติทางชีวภาพของสารสำคัญได้ในระยะยาว