งานวิจัยนี้นำเสนอการพัฒนาเส้นใยนาโนคาร์บอนที่มีโครงสร้างหลายเฟสผสมออกไซด์ของโลหะ (CNF@MOx; M = Ag, Mn, Bi, Fe) โดยฝังอนุภาคนาโนของเงิน แมงกานีส บิสมัท และเหล็ก ลงในเส้นใยนาโนคาร์บอนที่ได้จากพอลิอะคริโลไนไตรล์ (PAN) ผ่านเทคนิคอิเล็กโทรสปินนิ่งและผ่านการอบชุบในบรรยากาศอาร์กอน ผลลัพธ์แสดงให้เห็นว่าเส้นใยนาโนที่ได้มีโครงสร้างที่เป็นระเบียบ เส้นผ่านศูนย์กลางเฉลี่ย 559-830 นาโนเมตร และมีอนุภาคนาโนฝังตัวขนาด 9-21 นาโนเมตร การวิเคราะห์เชิงโครงสร้างยืนยันการมีอยู่ของสถานะออกซิเดชันต่างๆ ของโลหะออกไซด์ ซึ่งมีบทบาทสำคัญในกลไกการเก็บประจุไฟฟ้า ผลการทดสอบทางไฟฟ้าเคมีพบว่า CNF@Ag/Mn/Bi/Fe-20 มีค่าความจุจำเพาะสูงสุดที่ 156 F g⁻¹ ที่อัตราการสแกน 2 mV s⁻¹ และมีเสถียรภาพสูง โดยยังคงค่าความจุได้มากกว่า 96% หลังจากการชาร์จ-คายประจุ 1400 รอบ กลไกการเก็บประจุของเส้นใยนี้เกิดจากการทำงานร่วมกันระหว่างความสามารถในการเก็บประจุแบบชั้นคู่ไฟฟ้าและกระบวนการรีดอกซ์ ซึ่งช่วยเพิ่มประสิทธิภาพของวัสดุอิเล็กโทรดสำหรับตัวเก็บประจุยิ่งยวด
ในปัจจุบัน ความต้องการใช้พลังงานสะอาดและเทคโนโลยีการเก็บพลังงานที่มีประสิทธิภาพสูงเพิ่มขึ้นอย่างต่อเนื่อง เนื่องจากแหล่งพลังงานดั้งเดิม เช่น น้ำมันและถ่านหิน มีข้อจำกัดด้านทรัพยากรและก่อให้เกิดผลกระทบต่อสิ่งแวดล้อม ตัวเก็บประจุยิ่งยวด (Supercapacitor) ได้รับความสนใจอย่างมากในฐานะอุปกรณ์เก็บพลังงานที่มีความสามารถในการชาร์จ-คายประจุได้อย่างรวดเร็ว อายุการใช้งานยาวนาน และมีเสถียรภาพสูง อย่างไรก็ตาม ข้อจำกัดหลักของตัวเก็บประจุยิ่งยวดในปัจจุบันคือความสามารถในการเก็บพลังงานที่ต่ำเมื่อเทียบกับแบตเตอรี่ ทำให้เกิดความจำเป็นในการพัฒนาวัสดุอิเล็กโทรดที่มีประสิทธิภาพสูงขึ้น โครงงานนี้มุ่งเน้นการพัฒนา เส้นใยนาโนคาร์บอนผสมออกไซด์ของโลหะหลายเฟส (CNF@MOx; M = Ag, Mn, Bi, Fe) โดยใช้เทคนิคอิเล็กโทรสปินนิ่งและกระบวนการแคลไซน์ เพื่อเพิ่มความสามารถในการเก็บประจุของตัวเก็บประจุยิ่งยวด วัสดุที่ได้มีศักยภาพในการรวมกลไกการเก็บพลังงานแบบชั้นคู่ไฟฟ้า (Electric Double Layer Capacitance; EDLC) และกระบวนการรีดอกซ์ (Pseudocapacitance) ซึ่งช่วยเพิ่มค่าความจุจำเพาะและประสิทธิภาพของตัวเก็บประจุ เหตุผลที่ทำโครงการนี้ 1. ตอบสนองต่อความต้องการเทคโนโลยีการเก็บพลังงานที่มีประสิทธิภาพสูง – การพัฒนาตัวเก็บประจุยิ่งยวดที่สามารถเก็บพลังงานได้มากขึ้น จะช่วยให้สามารถนำไปใช้งานในอุปกรณ์อิเล็กทรอนิกส์และระบบพลังงานหมุนเวียนได้ดีขึ้น 2. การพัฒนาวัสดุอิเล็กโทรดที่มีต้นทุนต่ำและมีประสิทธิภาพสูง – วัสดุที่พัฒนาขึ้นในโครงการนี้ใช้เส้นใยนาโนคาร์บอนร่วมกับโลหะออกไซด์ ซึ่งเป็นวัสดุที่มีต้นทุนต่ำและสามารถผลิตได้ในปริมาณมาก 3. เพิ่มขีดความสามารถในการแข่งขันของเทคโนโลยีตัวเก็บประจุยิ่งยวด – การปรับปรุงคุณสมบัติของวัสดุอิเล็กโทรดจะช่วยให้ตัวเก็บประจุยิ่งยวดสามารถแข่งขันกับแบตเตอรี่ลิเธียมไอออนได้ดีขึ้นในแง่ของประสิทธิภาพและอายุการใช้งาน 4. มีศักยภาพในการประยุกต์ใช้ในอุตสาหกรรมพลังงานและอิเล็กทรอนิกส์ – วัสดุที่พัฒนาขึ้นสามารถนำไปใช้ในระบบกักเก็บพลังงาน หม้อแปลงไฟฟ้า อุปกรณ์อิเล็กทรอนิกส์ และยานยนต์ไฟฟ้า โครงการนี้จึงมีความสำคัญอย่างยิ่งในการช่วยพัฒนาเทคโนโลยีตัวเก็บประจุยิ่งยวดและส่งเสริมการใช้พลังงานสะอาดที่มีประสิทธิภาพมากขึ้น
คณะอุตสาหกรรมอาหาร
การปฏิบัติกิจกรรมการดำเนินงานของโครงการประกอบด้วยการตรวจเชื้อจุลินทรีย์ในตัวอย่างอาหาร สุขลักษณะมือผู้ปรุง/ผู้สัมผัสอาหาร ภาชนะ และอุปกรณ์ การอบรมให้ความรู้เรื่องสุขาภิบาลอาหารและสุขวิทยาส่วนบุคคล สภาพการสุขาภิบาลอาหารของโรงอาหารและสุขลักษณะร่างกายของผู้ปรุงอาหาร โดยทางหลักสูตรการจัดการความปลอดภัยอาหารร่วมกับสำนักงานบริหารทรัพย์สิน สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบังวางแผนปฏิบัติการประเมินสถานที่จำหน่ายอาหารตามหลักมาตรฐานความปลอดภัยอาหาร SAN 20 ข้อกำหนด ตรวจการปนเปื้อนเชื้อโคลิฟอร์มแบคทีเรียในอาหาร ภาชนะอุปกรณ์ มือผู้สัมผัสโดยใช้ชุดตรวจสอบ อ.13 จำนวน 6 ตัวอย่าง เช่น อาหารปรุงสำเร็จ พื้นที่เตรียมหน้าร้าน มือผู้สัมผัสอาหาร นอกจากนี้ยังมีการตรวจการปนเปื้อนเชื้อโคลิฟอร์มแบคทีเรียในน้ำใช้ น้ำแข็งด้วยชุดตรวจสอบ อ.11 ผลวิเคราะห์ที่ได้ทั้งทางกายภาพ จุลินทรีย์และเคมีเพื่อเป็นแนวทางในการพัฒนาคุณภาพและความปลอดภัยในการผลิตและบริการอาหารของโรงอาหารภายในสถาบัน
คณะอุตสาหกรรมอาหาร
งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาการห่อหุ้มแอนโธไซยานินในอิมัลชันชนิดน้ำในน้ำมันในน้ำ (W/O/W) และกระบวนการทำแห้งแบบพ่นฝอย เพื่อเพิ่มความเสถียรของแอนโธไซยานินจากปัจจัยภายนอก เช่น แสง อุณหภูมิ และการเปลี่ยนแปลงค่า pH การเตรียมอิมัลชัน W/O/W ดำเนินการโดยใช้สารลดแรงตึงผิวที่เหมาะสม และทำแห้งด้วยเครื่องพ่นฝอยที่อุณหภูมิขาเข้า 120–140°C และอุณหภูมิขาออกไม่ต่ำกว่า 80°C ผลการศึกษาพบว่าสัดส่วนองค์ประกอบของน้ำ น้ำมัน และสารลดแรงตึงผิวมีผลต่อคุณสมบัติทางกายภาพและเคมีของอิมัลชัน รวมถึงประสิทธิภาพในการกักเก็บแอนโธไซยานิน อิมัลชัน W/O/W ที่ผ่านกระบวนการทำแห้งแบบพ่นฝอยสามารถกักเก็บแอนโธไซยานินได้อย่างมีประสิทธิภาพ และช่วยเพิ่มความเสถียรในระยะยาว ซึ่งสามารถนำไปประยุกต์ใช้ในอุตสาหกรรมอาหารและผลิตภัณฑ์สุขภาพได้
คณะแพทยศาสตร์
โรคปวดศรีษะไมเกรน เป็นโรคที่พบได้บ่อย และ ส่งผลต่อการทำงาน การดำเนินชีวิตประจำวันของผู้ป่วยเป็นอย่างมาก โรคปวดศรีษะไมเกรนแบ่งออกเป็น 4 ระยะ ได้แก่ ระยะอาการเตือน (Prodrome หรือ premonitory) ระยะออร่า (Aura) ระยะปวดศีรษะ (Headache) และระยะฟื้นตัว (Postdrome) โดยระยะอาการเตือน (premonitory stage) สามารถเกิดขึ้นก่อนการปวดศีรษะได้นานถึง 72 ชั่วโมง และถือเป็นช่วงเวลาสำคัญอย่างมาก เนื่องจากมีการศึกษาพบว่าการใช้ยาในระยะนี้สามารถช่วยป้องกันการปวดศรีษะได้ อย่างไรก็ตาม อาการในระยะนี้มักไม่จำเพาะเจาะจง ทำให้ผู้ป่วยไม่สามารถรู้ได้แน่ชัดว่ากำลังอยู่ในระยะอาการเตือนของไมเกรนหรือไม่ โปรตีน Calcitonin gene-related peptide (cGRP) เป็นโมเลกุลสำคัญที่มีบทบาทในการเกิดไมเกรน โดยมีงานวิจัยพบว่าระดับ cGRP ในน้ำลายเพิ่มขึ้นในช่วงระยะอาการเตือน (premonitory stage) การศึกษานี้มีเป้าหมายเพื่อพัฒนาและประเมินชุดทดสอบแบบ Lateral Flow Immunoassay สำหรับตรวจหาระดับ cGRP ในน้ำลายของผู้ป่วยไมเกรนในระยะอาการเตือน ซึ่งอาจเป็นเครื่องมือช่วยยืนยัน เพื่อให้ผู้ป่วยมั่นใจ และ ใช้ยาก่อนที่จะมีอาการปวดหัว