โรคปวดศรีษะไมเกรน เป็นโรคที่พบได้บ่อย และ ส่งผลต่อการทำงาน การดำเนินชีวิตประจำวันของผู้ป่วยเป็นอย่างมาก โรคปวดศรีษะไมเกรนแบ่งออกเป็น 4 ระยะ ได้แก่ ระยะอาการเตือน (Prodrome หรือ premonitory) ระยะออร่า (Aura) ระยะปวดศีรษะ (Headache) และระยะฟื้นตัว (Postdrome) โดยระยะอาการเตือน (premonitory stage) สามารถเกิดขึ้นก่อนการปวดศีรษะได้นานถึง 72 ชั่วโมง และถือเป็นช่วงเวลาสำคัญอย่างมาก เนื่องจากมีการศึกษาพบว่าการใช้ยาในระยะนี้สามารถช่วยป้องกันการปวดศรีษะได้ อย่างไรก็ตาม อาการในระยะนี้มักไม่จำเพาะเจาะจง ทำให้ผู้ป่วยไม่สามารถรู้ได้แน่ชัดว่ากำลังอยู่ในระยะอาการเตือนของไมเกรนหรือไม่ โปรตีน Calcitonin gene-related peptide (cGRP) เป็นโมเลกุลสำคัญที่มีบทบาทในการเกิดไมเกรน โดยมีงานวิจัยพบว่าระดับ cGRP ในน้ำลายเพิ่มขึ้นในช่วงระยะอาการเตือน (premonitory stage) การศึกษานี้มีเป้าหมายเพื่อพัฒนาและประเมินชุดทดสอบแบบ Lateral Flow Immunoassay สำหรับตรวจหาระดับ cGRP ในน้ำลายของผู้ป่วยไมเกรนในระยะอาการเตือน ซึ่งอาจเป็นเครื่องมือช่วยยืนยัน เพื่อให้ผู้ป่วยมั่นใจ และ ใช้ยาก่อนที่จะมีอาการปวดหัว
This study has the potential to greatly improve the management and prevention of migraine. The early detection and management could potentially reduce the frequency and severity of migraines, thereby improving the quality of life for patients and reducing their overall burden. Moreover, the confirmatory test for premonitory symptoms provided by this study could help reduce medication overuse, resulting in cost savings for patients, minimizing potential side effects, and potentially lowers the incidence of medication-overuse headaches. Additionally, by providing patients with a predictive tool, the study promotes patient-centered care and encourages patients to take an active role in managing their migraines. The study may also increase awareness and education surrounding premonitory symptoms. Furthermore, if successful, this study could open up for more new, non-invasive, reliable, and accessible approaches to migraine management and prevention.
คณะวิศวกรรมศาสตร์
การบูรณาการระบบหุ่นยนต์อัจฉริยะเข้าสู่สภาพแวดล้อมที่มุ่งเน้นมนุษย์ เช่น ห้องปฏิบัติการ โรงพยาบาล และสถาบันการศึกษา มีความสำคัญมากขึ้นเนื่องจากความต้องการที่เพิ่มขึ้นสำหรับผู้ช่วยที่เข้าถึงได้และตระหนักถึงบริบท อย่างไรก็ตาม โซลูชันในปัจจุบันมักขาดความสามารถในการปรับขนาด เช่น การพึ่งพาบุคลากรเฉพาะทางเพื่อตอบคำถามเดิมซ้ำๆ ในฐานะผู้ดูแลระบบของแผนกเฉพาะ และการขาดความสามารถในการปรับตัวให้เข้ากับสภาพแวดล้อมแบบไดนามิกที่ต้องการการตอบสนองตามสถานการณ์แบบเรียลไทม์ งานวิจัยนี้นำเสนอกรอบแนวคิดใหม่สำหรับผู้ช่วยหุ่นยนต์เชิงโต้ตอบ (Beckerle et al., 2017) ที่ออกแบบมาเพื่อช่วยในระหว่างการเยี่ยมชมห้องปฏิบัติการและบรรเทาความท้าทายที่เกิดจากข้อจำกัดด้านทรัพยากรบุคคลในการให้ข้อมูลที่ครอบคลุมแก่ผู้เยี่ยมชม ระบบที่นำเสนอทำงานผ่านหลายโหมด รวมถึงโหมดสแตนด์บายและโหมดจดจำ เพื่อให้แน่ใจว่ามีการโต้ตอบที่ราบรื่นและสามารถปรับตัวได้ในบริบทต่างๆ ในโหมดสแตนด์บาย หุ่นยนต์จะแสดงสัญญาณความพร้อมผ่านแอนิเมชันใบหน้ายิ้มขณะลาดตระเวนตามเส้นทางที่กำหนดไว้ล่วงหน้าหรือประหยัดพลังงานเมื่อต้องหยุดนิ่ง การตรวจจับสิ่งกีดขวางขั้นสูงช่วยให้มั่นใจในความปลอดภัยขณะเคลื่อนที่ในสภาพแวดล้อมแบบไดนามิก ส่วนโหมดจดจำจะเปิดใช้งานผ่านท่าทางหรือคำปลุก โดยใช้เทคโนโลยีวิชันคอมพิวเตอร์ขั้นสูงและระบบรู้จำเสียงพูดแบบเรียลไทม์เพื่อตรวจจับผู้ใช้ การจดจำใบหน้าช่วยจำแนกบุคคลว่าเป็นที่รู้จักหรือไม่รู้จัก พร้อมทั้งมอบคำทักทายเฉพาะบุคคลหรือคำแนะนำตามบริบทเพื่อเพิ่มการมีส่วนร่วมของผู้ใช้ หุ่นยนต์ต้นแบบและการออกแบบ 3 มิติแสดงไว้ในรูปที่ 1 ในโหมดโต้ตอบ ระบบได้บูรณาการเทคโนโลยีขั้นสูงหลายประการ เช่น การรู้จำเสียงพูดขั้นสูง (ASR Whisper) การประมวลผลภาษาธรรมชาติ (NLP) และโมเดลภาษาขนาดใหญ่ Ollama 3.2 (LLM Predictor, 2025) เพื่อมอบประสบการณ์ที่ใช้งานง่าย รับรู้บริบท และสามารถปรับตัวได้ โดยได้รับแรงบันดาลใจจากความต้องการมีส่วนร่วมกับนักศึกษาและส่งเสริมความสนใจในภาควิชา RAI ซึ่งมีผู้เยี่ยมชมมากกว่า 1,000 คนต่อปี ระบบนี้ช่วยแก้ไขปัญหาการเข้าถึงข้อมูลในกรณีที่ไม่มีเจ้าหน้าที่มนุษย์ ด้วยการตรวจจับคำปลุก การจดจำใบหน้าและท่าทาง และการตรวจจับสิ่งกีดขวางด้วย LiDAR หุ่นยนต์จึงสามารถสื่อสารภาษาอังกฤษได้อย่างราบรื่น พร้อมทั้งนำทางอย่างปลอดภัยและมีประสิทธิภาพ ระบบปฏิสัมพันธ์แบบ Retrieval-Augmented Generation (RAG) สื่อสารกับหุ่นยนต์เคลื่อนที่ที่สร้างบน ROS1 Noetic โดยใช้โปรโตคอล MQTT ผ่านเครือข่าย Ethernet ระบบนี้เผยแพร่เป้าหมายการนำทางไปยังโมดูล move_base ใน ROS ซึ่งจัดการการนำทางและหลีกเลี่ยงสิ่งกีดขวางโดยอัตโนมัติ แผนผังอธิบายระบบแสดงไว้ในรูปที่ 2 กรอบแนวคิดนี้ประกอบด้วยสถาปัตยกรรมแบ็กเอนด์ที่แข็งแกร่ง โดยใช้ MongoDB สำหรับการจัดเก็บและดึงข้อมูล รวมถึงกลไก RAG (Thüs et al., 2024) ในการประมวลผลข้อมูลหลักสูตรในรูปแบบ PDF เพื่อให้แน่ใจว่าหุ่นยนต์สามารถให้คำตอบที่ถูกต้องและเหมาะสมกับบริบทแก่ผู้ใช้ นอกจากนี้ การใช้แอนิเมชันใบหน้ายิ้มและระบบแปลงข้อความเป็นเสียง (TTS BotNoi) ยังช่วยเพิ่มอัตราการมีส่วนร่วมของผู้ใช้ ผลลัพธ์จากการศึกษาสังเกตการณ์และแบบสำรวจพบว่าระบบมีการปรับปรุงอย่างมีนัยสำคัญในด้านความพึงพอใจของผู้ใช้และการเข้าถึงข้อมูล เอกสารฉบับนี้ยังกล่าวถึงความสามารถของหุ่นยนต์ในการทำงานในสภาพแวดล้อมแบบไดนามิกและพื้นที่ที่เน้นมนุษย์ เช่น การจัดการกับการรบกวนระหว่างปฏิบัติภารกิจ การออกแบบแบบแยกส่วนช่วยให้สามารถผสานรวมฟีเจอร์เพิ่มเติม เช่น การจดจำท่าทางและการอัปเกรดฮาร์ดแวร์ได้ง่าย ซึ่งช่วยให้ระบบสามารถขยายขีดความสามารถในระยะยาวได้ อย่างไรก็ตาม มีข้อจำกัดบางประการ เช่น ต้นทุนการติดตั้งเริ่มต้นที่สูงและการพึ่งพาการกำหนดค่าฮาร์ดแวร์เฉพาะ ในอนาคต งานวิจัยจะมุ่งเน้นไปที่การเพิ่มความสามารถในการรองรับภาษาต่างๆ การขยายกรณีการใช้งาน และการสำรวจปฏิสัมพันธ์แบบร่วมมือกันระหว่างหุ่นยนต์หลายตัว โดยสรุป ผู้ช่วยหุ่นยนต์เชิงโต้ตอบที่นำเสนอในงานวิจัยนี้เป็นก้าวสำคัญในการเชื่อมโยงความต้องการของมนุษย์เข้ากับความก้าวหน้าทางเทคโนโลยี ด้วยการผสานรวมเทคโนโลยีปัญญาประดิษฐ์ล้ำสมัยเข้ากับโซลูชันฮาร์ดแวร์ที่ใช้งานได้จริง งานวิจัยนี้จึงนำเสนอระบบที่สามารถขยายขีดความสามารถ มีประสิทธิภาพ และเป็นมิตรกับผู้ใช้ ซึ่งช่วยเพิ่มการเข้าถึงข้อมูลและการมีส่วนร่วมของผู้ใช้ในสภาพแวดล้อมที่มุ่งเน้นมนุษย์
คณะวิศวกรรมศาสตร์
ระบบสร้างภาษามือไทยเชิงกำเนิดมีเป้าหมายในการพัฒนาแพลตฟอร์ม การสร้างแบบจำลอง 3 มิติและแอนิเมชัน ที่สามารถแปลง ประโยคภาษาไทยเป็นท่าทางภาษามือไทย (TSL) ที่ถูกต้องและเป็นธรรมชาติ โครงการนี้ช่วยเสริมสร้างการสื่อสารสำหรับ ชุมชนผู้บกพร่องทางการได้ยินในประเทศไทย โดยใช้แนวทางที่อิงกับ แลนมาร์ก (Landmark-Based Approach) ผ่านการใช้ Vector Quantized Variational Autoencoder (VQVAE) และ Large Language Model (LLM) ในการสร้างภาษามือ ระบบเริ่มต้นด้วยการ ฝึกโมเดล VQVAE โดยใช้ข้อมูลแลนมาร์กที่สกัดจากวิดีโอภาษามือ เพื่อให้โมเดลเรียนรู้ การแทนค่าแบบแฝง (Latent Representations) ของท่าทางภาษามือไทย หลังจากนั้น โมเดลที่ฝึกแล้วจะถูกใช้เพื่อ สร้างลำดับแลนมาร์กของท่าทางเพิ่มเติม ซึ่งช่วยขยายชุดข้อมูลฝึกโดยอ้างอิงจาก BigSign ThaiPBS Dataset เมื่อชุดข้อมูลได้รับการขยายแล้ว ระบบจะทำการ ฝึก LLM เพื่อสร้างลำดับแลนมาร์กที่ถูกต้องจากข้อความภาษาไทย โดยลำดับแลนมาร์กที่ได้จะถูกนำไปใช้ สร้างแอนิเมชันของโมเดล 3 มิติใน Blender เพื่อให้ได้ท่าทางภาษามือที่ลื่นไหลและเป็นธรรมชาติ โครงการนี้ถูกพัฒนาด้วย Python โดยใช้ MediaPipe สำหรับการสกัดแลนมาร์ก OpenCV สำหรับการประมวลผลภาพแบบเรียลไทม์ และ Blender’s Python API สำหรับสร้างแอนิเมชัน 3 มิติ ด้วยการผสานเทคโนโลยี AI, การเข้ารหัสผ่าน VQVAE และการสร้างแลนมาร์กด้วย LLM ระบบนี้มุ่งหวังที่จะ เชื่อมช่องว่างระหว่างข้อความภาษาไทยและภาษามือไทย เพื่อมอบแพลตฟอร์มการแปลภาษามือแบบโต้ตอบ ในเวลาจริง ให้กับชุมชนผู้บกพร่องทางการได้ยินในประเทศไทย
คณะวิทยาศาสตร์
วัสดุตัวเร่งปฏิกิริยาเชิงแสงที่ตกแต่งด้วยวัสดุนาโนโลหะ (Bi-Metallic NPs/ Photocatalyst) ได้ถูกสังเคราะห์ ในการสลายอะฟลาทอกซิน บี1 ตัวเร่งปฏิกิริยาเชิงแสงที่ตกแต่งด้วยวัสดุนาโนโลหะถูกสังเคราะห์ด้วยคลื่นอัลตราโซนิก (Ultrasonic waves) วัสดุถูกนำมาศึกษาคุณลักษณะทางเคมีโดยการใช้เทคนิค Transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction analysis (XRD), Fourier transform infrared spectrometer (FT-IR), Zeta potential analyzer และ UV-visible spectrophotometer อนุภาคนาโนโลหะบนตัวเร่งปฏิกิริยาเชิงแสงถูกนำมาทดสอบประสิทธิภาพในการย่อยสลาย AFB1 ในน้ำเสียจากน้ำทิ้งครัวเรือนภายใต้แสงวิสิเบิล โดยนำมาวิเคราะห์ด้วยโครมาโตกราฟีของเหลวสมรรถนะสูง ช่วงความยาวคลื่น 365 นาโนเมตร พบว่าสามารถกำจัด AFB1 ได้อย่างมีประสิทธิภาพถึง 100 % ภายในเวลา 2 นาที ประสิทธิภาพที่เหนือชั้นนี้เป็นผลมาจาก โครงสร้างที่มีรูพรุนสูง พื้นที่ผิวจำเพาะที่เพิ่มขึ้น และอัตราการรวมตัวใหม่ของอิเล็กตรอน-โฮลที่ลดลง แสดงให้เห็นว่าวัสดุนาโนที่ได้พัฒนาประสบความสำเร็จในการสลาย AFB1