Migraine, a prevalent neurological disorder, is the third most common disease globally, causing significant health and financial burdens. It has four stages: prodrome, aura, headache, and postdrome. The prodrome (also known as premonitory) stage is crucial as it precedes the headache by up to 72 hours. Taking medication during the premonitory peroid has shown to prevent the headache phase . However, the symptoms of premonitory period lack specificity, making it difficult for patients to know if they’re experiencing premonitory symptoms. Calcitonin-gene related peptide (cGRP),is a protein that plays a key role in migraine pathogenesis and studies found that salivary cGRP levels increase during the premonitory stage. This study aims to develop and evaluate a lateral flow immunoassay kit for detecting salivary cGRP levels in migraine patients during the prodrome stage. It can serve as a confirmation tool for premonitory symptoms.
This study has the potential to greatly improve the management and prevention of migraine. The early detection and management could potentially reduce the frequency and severity of migraines, thereby improving the quality of life for patients and reducing their overall burden. Moreover, the confirmatory test for premonitory symptoms provided by this study could help reduce medication overuse, resulting in cost savings for patients, minimizing potential side effects, and potentially lowers the incidence of medication-overuse headaches. Additionally, by providing patients with a predictive tool, the study promotes patient-centered care and encourages patients to take an active role in managing their migraines. The study may also increase awareness and education surrounding premonitory symptoms. Furthermore, if successful, this study could open up for more new, non-invasive, reliable, and accessible approaches to migraine management and prevention.
คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี
This research confirms the potential of bamboo fiber as a sustainable raw material for the textile industry, demonstrating exceptional properties that meet both functional requirements and environmental friendliness. The study focuses on integrating sustainability concepts with material innovation, encompassing fiber property analysis, production process development, and product design. The research objectives were to: 1) develop the properties of bamboo fiber for production; 2) study factors in designing environmentally friendly textile products from bamboo fiber; and 3) forecast future prospects for environmentally friendly textile product design using bamboo fiber. The findings revealed that 60-day-old bamboo possessed optimal properties for fiber separation, with an average fiber size of 5.32 μm, smaller than other natural fibers, resulting in superior moisture absorption and ventilation properties. When blended with recycled polyester fiber in a 30:70 ratio, the yarn exhibited strength and unique tactile characteristics. Although the antibacterial properties against Staphylococcus aureus were low, the fibers demonstrated excellent whiteness and softness. Factor analysis identified four key components in product design: Local Materials, Green Products, Healthy, and Sustainability. Consumer satisfaction evaluation of the prototype products showed high levels of acceptance, with the model explaining 84.7% of consumer satisfaction. The developed production process reduced chemical usage and hazardous waste. Furthermore, utilizing fast-growing bamboo minimized long-term environmental impact, contributing to sustainable development in Thailand's rural communities across economic, environmental, and occupational stability dimensions. The research demonstrates that developing bamboo fiber blended with recycled polyester creates sustainable products that meet consumer demands for health consciousness, local material utilization, and green product promotion. Commercial implementation of these products can enhance economic value and promote environmentally friendly product development in the future.
คณะวิศวกรรมศาสตร์
This study was conducted to develop a prototype cooling cover for transporting raw milk, aiming to provide a solution for maintaining the quality of raw milk during transportation to milk collection centers. The cooling cover is made using Phase Change Material (PCM), produced from water mixed with a gelling agent, in an amount of 5.6 kg, attached around an aluminum milk tank (with a capacity of 25 L). The cover is then covered with a UV-reflective fabric in two types: polyvinyl chloride (PVC) and high-density polyethylene (HDPE). The temperature reduction performance of both types of covers was evaluated by measuring water temperatures at various points along the radial and vertical directions of the milk tank at six points, using type-T thermocouples, under three environmental conditions: a constant temperature of 25 °C, 35 °C, and outdoor ambient temperature (average temperature 35.5 °C) for a minimum duration of 180 min. The experimental results revealed that at 120 min., the water in the tank covered with PCM-PVC and PCM-HDPE covers had temperatures lower than the ambient temperature by 12.6 °C and 12.9 °C, respectively, under a constant ambient temperature of 25 °C, and under a constant ambient temperature of 35 °C lower by 16.7 °C and 16.4 °C, respectively, and outdoor conditions. Since the temperature reduction performance of PCM-PVC and PCM-HDPE covers showed no significant difference, the performance of microbial quality preservation of raw milk was assessed only with PCM-PVC cover in comparison to a non-covered case (control), by measuring coliform and Escherichia coli counts using compact dry plates. Results indicated that after 120 min., milk in the tank covered with PCM-PVC had an average coliform count of 1.6 × 10^4 CFU/ml and E. coli count of 2 × 10^3 CFU/ml, which was lower than the non-covered control with an average coliform count of 1.5 × 10^4 CFU/ml and E. coli count of 1.1 × 10^4 CFU/ml. This study concludes that the temperature reduction achieved by the cooling cover can help inhibit coliform growth to levels below raw milk quality standards, demonstrating the potential of the cooling cover in maintaining the quality and safety of raw milk during transport, ultimately contributing to an improved quality of life for Thai dairy farmers.
วิทยาลัยการจัดการนวัตกรรมและอุตสาหกรรม
Diabetes is a significant global health issue, particularly due to complications related to diabetic wounds. Studies indicate that approximately 15-25% of diabetic patients develop foot ulcers, with more than 50% of severe cases leading to amputation. This results in a substantial decline in the quality of life for patients. Current treatments for diabetic wounds face challenges such as antibiotic-resistant bacterial infections and delayed wound healing, highlighting the need for innovative solutions to accelerate the healing process and reduce the risk of limb loss. Cotylelobium lanceolatum Craib, a medicinal plant long utilized in traditional Thai medicine, is known for its anti-inflammatory and wound-healing properties. This study focuses on developing an extract from Cotylelobium lanceolatum Craib in the form of nano silver (Nano Silver) to enhance the effectiveness of diabetic wound treatment. Nano silver technology enables deeper penetration into the skin, provides potent antibacterial activity, and promotes wound healing by reducing inflammation and stimulating tissue regeneration. The development of nano silver derived from Cotylelobium lanceolatum Craib extract is expected to help reduce chronic wounds in diabetic patients, lower the risk of infection, and decrease the incidence of limb amputation and mortality associated with diabetic wound complications. This research represents a significant step toward creating a safer and more effective treatment alternative for diabetic wound care.