Migraine, a prevalent neurological disorder, is the third most common disease globally, causing significant health and financial burdens. It has four stages: prodrome, aura, headache, and postdrome. The prodrome (also known as premonitory) stage is crucial as it precedes the headache by up to 72 hours. Taking medication during the premonitory peroid has shown to prevent the headache phase . However, the symptoms of premonitory period lack specificity, making it difficult for patients to know if they’re experiencing premonitory symptoms. Calcitonin-gene related peptide (cGRP),is a protein that plays a key role in migraine pathogenesis and studies found that salivary cGRP levels increase during the premonitory stage. This study aims to develop and evaluate a lateral flow immunoassay kit for detecting salivary cGRP levels in migraine patients during the prodrome stage. It can serve as a confirmation tool for premonitory symptoms.
This study has the potential to greatly improve the management and prevention of migraine. The early detection and management could potentially reduce the frequency and severity of migraines, thereby improving the quality of life for patients and reducing their overall burden. Moreover, the confirmatory test for premonitory symptoms provided by this study could help reduce medication overuse, resulting in cost savings for patients, minimizing potential side effects, and potentially lowers the incidence of medication-overuse headaches. Additionally, by providing patients with a predictive tool, the study promotes patient-centered care and encourages patients to take an active role in managing their migraines. The study may also increase awareness and education surrounding premonitory symptoms. Furthermore, if successful, this study could open up for more new, non-invasive, reliable, and accessible approaches to migraine management and prevention.
คณะอุตสาหกรรมอาหาร
Coffee is a critical agricultural commodity to be used to produce a premium beverage to serve people worldwide. Coffee microbiome turned to be an essential tool to improve the bean quality through the natural fermentation. Therefore, understanding the microbial diversities could create the final product's better quality. This study investigated the natural microbial consortium during the wet process fermentation of coffee onsite in Thailand to characterize the microorganisms involved in correlation toward the biochemical characteristics and metabolic attributes. Roasting is another important step in developing the complex flavor/ aroma that make coffee to be enjoyable. During the roasting process, the beans undergo many complex and alternatively change in the physicochemical properties from the gained substances in the fermentation process. The changing in the formation of the substances responsible for the sensory qualities, physicochemical/ aroma attributes as well as the health benefits of the final product. Using the starter culture could also develop the distinguished characteristics of coffee (Research collaboration with Van Hart company)
วิทยาลัยอุตสาหกรรมการบินนานาชาติ
The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.
คณะวิศวกรรมศาสตร์
A platform that aims to connect students from all faculties and departments to promote joint activities and develop effective social and collaborative skills, focusing on: Promoting learning and self-development through reviewing lessons and collaborative learning that are relevant to all faculties and departments in the university, creating a space for negotiation and exchange of knowledge, and supporting joint activities to build relationships and cooperation among students.