ทุเรียนเป็นพืชเศรษฐกิจที่สำคัญของประเทศไทยและเป็นสินค้าส่งออกที่มีปริมาณสูงที่สุดในโลก อย่างไรก็ตาม การผลิตทุเรียนให้มีคุณภาพสูงจำเป็นต้องอาศัยการดูแลสุขภาพของต้นทุเรียนให้แข็งแรงและปราศจากโรค เพื่อให้สามารถให้ผลผลิตได้อย่างมีประสิทธิภาพ และลดความเสียหายที่อาจเกิดขึ้นกับทั้งต้นและผลทุเรียน โรคที่พบได้บ่อยและสามารถแพร่กระจายได้อย่างรวดเร็ว มักเป็นโรคที่เกิดขึ้นบริเวณใบ ซึ่งส่งผลกระทบโดยตรงต่อการเจริญเติบโตของต้นทุเรียนและคุณภาพของผลผลิต การตรวจสอบและควบคุมโรคทางใบจึงเป็นปัจจัยสำคัญในการรักษาคุณภาพของทุเรียน งานวิจัยนี้มีวัตถุประสงค์เพื่อนำเทคโนโลยีการวิเคราะห์ภาพถ่ายร่วมกับปัญญาประดิษฐ์ (Artificial Intelligence: AI) มาประยุกต์ใช้ในการจำแนกโรคที่เกิดขึ้นในใบทุเรียน เพื่อให้เกษตรกรสามารถตรวจสอบโรคได้ด้วยตนเองโดยไม่ต้องอาศัยผู้เชี่ยวชาญ โดยจำแนกใบออกเป็น 3 ประเภท ได้แก่ ใบสุขภาพดี (Healthy: H) ใบที่ติดเชื้อแอนแทรคโนส (Anthracnose: A) และใบที่ติดเชื้อจุดสาหร่าย (Algal Spot: S) ทั้งนี้ ได้นำอัลกอริทึม Convolutional Neural Networks (CNN) ได้แก่ ResNet-50, GoogleNet และ AlexNet มาใช้ในการพัฒนาแบบจำลองเพื่อจำแนกประเภทของโรค ผลการทดลองพบว่า แบบจำลองที่ใช้ ResNet-50, GoogleNet และ AlexNet ให้ค่าความแม่นยำในการจำแนกใบเท่ากับ 93.57%, 93.95% และ 68.69% ตามลำดับ
ทุเรียนเป็นพืชเศรษฐกิจที่มีบทบาทสำคัญต่อประเทศไทยในหลายมิติ ทั้งในด้านเศรษฐกิจ การเกษตร และการท่องเที่ยว โดยประเทศไทยเป็นหนึ่งในผู้ผลิตและส่งออกทุเรียนรายใหญ่ของโลก การรักษาคุณภาพของทุเรียนจึงเป็นปัจจัยสำคัญในการรักษาความสามารถในการแข่งขันในตลาดโลก อย่างไรก็ตาม การผลิตทุเรียนให้มีคุณภาพสูงและให้ผลผลิตที่ดีนั้น จำเป็นต้องอาศัยการดูแลรักษาต้นทุเรียนให้แข็งแรงและมีความต้านทานต่อโรคได้อย่างมีประสิทธิภาพ โรคพืชเป็นหนึ่งในปัจจัยสำคัญที่ส่งผลกระทบต่อผลผลิตของทุเรียน ซึ่งอาจเกิดจากปัจจัยแวดล้อม เช่น สภาพดิน น้ำ อากาศ รวมถึงการติดเชื้อจากเชื้อรา แบคทีเรีย และไวรัส โรคโลกที่เกิดได้ง่ายและพบเห็นได้มากที่สุดคือโรคทางใบ เนื่องจากใบมีบทบาทสำคัญต่อกระบวนการสังเคราะห์แสง ซึ่งมีผลต่อการเจริญเติบโตของต้นและคุณภาพของผลผลิต หากไม่มีการตรวจสอบและควบคุมโรคทางใบอย่างเหมาะสม อาจส่งผลให้ผลผลิตลดลง ต้นทุเรียนอ่อนแอ และเพิ่มความเสี่ยงต่อการระบาดของโรคในสวน ปัจจุบันการตรวจสอบและวินิจฉัยโรคในใบทุเรียนยังคงต้องอาศัยผู้เชี่ยวชาญด้านพืช ซึ่งอาจมีข้อจำกัดทั้งในด้านจำนวนบุคลากรและเวลาในการตรวจสอบแปลงปลูกขนาดใหญ่ การนำเทคโนโลยีภาพถ่ายและปัญญาประดิษฐ์ (Artificial Intelligence: AI) มาประยุกต์ใช้ในการจำแนกและวินิจฉัยโรคทางใบ จึงเป็นแนวทางในการช่วยเกษตรกรให้สามารถวิเคราะห์และวินิจฉัยโรคได้ด้วยตนเอง ลดความจำเป็นในการพึ่งพาผู้เชี่ยวชาญ และสามารถดำเนินการควบคุมโรคได้อย่างทันท่วงที ด้วยเหตุนี้งานวิจัยนี้จึงมุ่งเน้นไปที่การพัฒนาแบบจำลองการตรวจสอบโรคในใบทุเรียนโดยใช้เทคโนโลยีปัญญาประดิษฐ์ร่วมกับอัลกอริทึมการเรียนรู้เชิงลึก (Deep Learning) เพื่อจำแนกประเภทของโรคที่เกิดขึ้นในใบ โดยมีเป้าหมายเพื่อช่วยเพิ่มประสิทธิภาพในการตรวจสอบโรค ลดต้นทุนและเวลาในการวินิจฉัยโรค และสนับสนุนเกษตรกรให้สามารถบริหารจัดการสวนทุเรียนได้อย่างมีประสิทธิภาพและยั่งยืน
วิทยาเขตชุมพรเขตรอุดมศักดิ์
ทุเรียนเป็นพืชเศรษฐกิจสำคัญของประเทศไทยที่ได้รับผลกระทบจากโรคทางใบ เช่น โรคใบสนิม ใบไหม้ และใบจุด ซึ่งส่งผลให้คุณภาพผลผลิตลดลงและเพิ่มต้นทุนการจัดการ งานวิจัยนี้มุ่งเน้นการพัฒนาซอฟต์แวร์ AI สำหรับตรวจคัดกรองโรคใบทุเรียน โดยประยุกต์ใช้เทคโนโลยีการเรียนรู้เชิงลึกในการจำแนกชนิดของรอยโรคในใบทุเรียน
คณะวิศวกรรมศาสตร์
โปรเจคนี้มีเป้าหมายในการพัฒนาต้นแบบของระบบเล็งอาวุธที่จำลองเป็นปืนต่อต้านอากาศยาน โดยใช้กล้องออปติคอลเพื่อตรวจจับวัตถุที่เคลื่อนที่และคำนวณวิถีแบบ Real time ผลลัพธ์ที่ได้นั้นจะส่งไปยังเลเซอร์พอยน์เตอร์บนมอเตอร์ 2 แกนหมุน แบบ degrees of freedom(DoF) ส่งผลให้สามารถเล็งไปยังเป้าหมายที่คาดการณ์ไว้ได้ ระบบนี้ถูกสร้างขึ้นบนแพตฟอร์มของ Raspberry Pi 4 ร่วมกับซอฟแวร์ machine vision โปรแกรมการ tracking นั้นถูกพัฒนาภายใต้ไลบรารีของ OpenCV โดยอาศัย color detections algorithms ผลการทดลองตอนนี้สามารถตรวจจับการเคลื่อนไหวของลูกเทนนิสแบบ real time ที่อัตรา 30 เฟรมต่อวินาที(fps) ขณะนี้โปรเจคอยู่นขั้นตอนการออกแบบและทดลองกับระบบแมคคานิคเพื่อควบคุมเลเซอร์พอยน์เตอร์ให้แม่นยำ โปรเจคนี้มีการนำความรู้ทางด้านอิเล็กทรอนิกส์(computer programing) และวิศวกรรมเครื่องกล(การควบคุมมอเตอร์)มาใช้งาน
คณะทันตแพทยศาสตร์
Aggregatibacter actinomycetemcomitans เป็นเชื้อก่อโรคหลักของโรคปริทันต์ โดยสามารถทำลายเอ็นยึดปริทันต์และกระดูกเบ้าฟันผ่านการสร้างไบโอฟิล์ม D-LL-31 ซึ่งเป็นเปปไทด์ต้านจุลชีพที่ถูกดัดแปลงทางวิศวกรรม แสดงศักยภาพที่สูงในการกำจัดเชื้อที่ฝังตัวในไบโอฟิล์มได้ดีกว่าวิธีรักษาแบบดั้งเดิม ขณะที่ DNase I ช่วยเสริมประสิทธิภาพโดยการสลายเมทริกซ์ของไบโอฟิล์ม โดยวัตถุประสงศ์ของงานวิจัยนี้ต้องศึกษาผลของ D-LL-31 ร่วมกับ DNase I ต่อไบโอฟิล์มของ A. actinomycetemcomitans ผลการทอลองพบว่า D-LL-31 สามารถกำจัดไบโอฟิล์มได้อย่างมีประสิทธิภาพ และเมื่อใช้ร่วมกับ DNase I จะช่วยเพิ่มการทำลายไบโอฟิล์มได้มากขึ้น โดยไม่ก่อให้เกิดความเป็นพิษต่อเซลล์เยื่อบุเหงือก ดังนั้นการใช้ D-LL-31 ร่วมกับ DNase I มีศักยภาพในการพัฒนาเป็นน้ำยาบ้วนปาก เพื่อช่วยรักษาสุขภาพช่องปากและลดความเสี่ยงของโรคปริทันต์