KMITL Innovation Expo 2025 Logo

Design of a Processing Room for Red Pork Offal

Abstract

This project aims to propose a design for a red offal processing room in a pork processing plant that processes 500 pigs per day or 80 pigs per hour. Each pig weighs approximately 105 kilograms, with 3.47% of the weight consisting of red offal. The process involves separating liver, gall bladder, heart, lungs, spleen, and kidneys as required. These parts are then chilled in cold water to reduce their temperature to below 7°C before packaging and sealing. Sorting is based on the number of pieces and weight, depending on the type of product. The processing times of sorting chilling and packaging vary depending on the product's type and size. The design was developed using data collected from the current production line and referenced standards. The room layout was planned using Systematic Layout Planning (SLP) principles to analyze activity relationships within the room and define functional areas. Equipment sizes and the required number of operators were calculated to ensure optimal use of space. The red offal processing room was designed with an area of 56 square meters. After the layout design was completed, a 3D model was created using SketchUp 2024, and the workflow and operations were simulated and analyzed using Flexsim 2024

Objective

บริษัท เบทาโกร จำกัด (มหาชน) ได้มีแผนการขยายโรงงานแปรรูปสุกรทั้งในประเทศและต่างประเทศ การออกแบบกระบวนการผลิตจึงเป็นสิ่งสำคัญที่ทำให้โรงงานที่จะก่อตั้งนั้นสามารถใช้งานได้อย่างมีประสิทธิภาพทั้งในด้านกระบวนการการผลิตและความสะอาด เพื่อทำให้สินค้าที่ส่งมอบแก่ผู้บริโภคมีคุณภาพที่ดี โดยผลิตภัณฑ์ที่สำคัญของโรงงานแปรรูปสุกร ได้แก่ กลุ่มชิ้นส่วนสุกรตัดแต่ง และกลุ่มเครื่องในสุกร ซึ่งประกอบไปด้วยเครื่องในแดง และเครื่องในขาว โครงงานนี้ได้รับมอบหมายให้ศึกษากระบวนการทำงานเพื่อออกแบบห้องเครื่องในแดงให้รองรับการผลิตที่สูงขึ้นและมีความหลากหลายของผลิตภัณฑ์มากขึ้น โดยกระบวนการทำงานภายในห้องถูกต้องเป็นไปตามหลักการปฏิบัติที่ดีสำหรับโรงแปรรูปสุกรของกรมปศุสัตว์

Other Innovations

none

คณะเทคโนโลยีการเกษตร

none

-

Read more
Mango Fruit Detection and 3D Localization System

คณะวิศวกรรมศาสตร์

Mango Fruit Detection and 3D Localization System

The evaluation of mango yield and consumer behavior reflects an increasing awareness of product origins, with a growing demand for traceability to understand how the produce has been cultivated and managed. This study explores the relationship between mango characteristics and cultivation practices before harvest, using location identification to provide insights into these processes. To achieve this, a model was developed to detect and locate mangoes using 2D images via a Deep Learning approach. The study also investigates techniques to determine the real-world coordinates of mangoes from 2D images. The YOLOv8 model was employed for object detection, integrated with camera calibration and triangulation techniques to estimate the 3D positions of detected mangoes. Experiments involved 125 trials with randomized mango positions and camera placements at varying yaw and pitch angles. Parameters extracted from sequential images were compared to derive the actual 3D positions of the mangoes. The YOLOv8 model demonstrated high performance with prediction metrics of Precision (0.928), Recall (0.901), mAP50 (0.965), mAP50-95 (0.785), and F1-Score (0.914). These results indicate sufficient accuracy for predicting mango positions, with an average positional error of approximately 38 centimeters.

Read more
AI-Powered Security & Consumer Analytics, Integrating AI Vision for Enhanced Security and Consumer Behavior Insights in the Digital Era

คณะบริหารธุรกิจ

AI-Powered Security & Consumer Analytics, Integrating AI Vision for Enhanced Security and Consumer Behavior Insights in the Digital Era

In the digital era, Artificial Intelligence (AI) plays a crucial role in developing smart cities and enhancing business operations. Among AI-driven technologies, AI Vision Analytics has gained significant attention for Access Control Systems (ACS) and Consumer Behavior Analytics. This research focuses on integrating AI Access Control and AI Video Analytics to examine factors influencing Technology Adoption Behavior using the UTAUT2 (Unified Theory of Acceptance and Use of Technology 2) framework. Key factors assessed include Trust in Technology, Effort Expectancy, Social Influence, and Performance Expectancy, which impact users’ willingness to adopt AI-driven security and analytics solutions. The study also includes a real-world implementation of AI Vision Analytics at KMITL EXPO, where an AI-powered Access Control System and AI Video Analytics are deployed. The collected data is analyzed to identify trends in AI adoption for business management and security enhancement. The findings provide valuable insights for businesses and organizations to optimize AI Vision Analytics for enhancing security management and digital marketing strategies.

Read more