KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

ระบบปัญญาประดิษฐ์ของสรรพสิ่งสำหรับติดตามและควบคุมการให้น้ำพืชโดยใช้ข้อมูลสภาพอากาศ

รายละเอียด

งานวิจัยนี้เป็นการออกแบบและสร้างเครื่องต้นแบบระบบปัญญาประดิษฐ์ของสรรพสิ่งสำหรับติดตามและควบคุมการให้น้ำพืชโดยใช้ข้อมูลสภาพอากาศ โดยระบบประกอบไป 4 ส่วนสำคัญ คือ ส่วนที่ 1 สถานีตรวจวัดสภาพอากาศ (Weather Station) ประกอบไปด้วยเซ็นเซอร์ต่าง ๆ เช่น อุณหภูมิอากาศ ความชื้นสัมพัทธ์ ความเร็วลม และความยาวนานของแสง เป็นต้น ส่วนที่ 2 หน่วยประมวลผล (Controller Unit) โดยจะมีการติดตั้งอัลกอริทึมหรือแบบจำลองการเรียนรู้ของเครื่องเพื่อใช้ประเมินค่าการคายระเหยน้ำของพืชอ้างอิง (ETo) และจะใช้คำนวณร่วมกับค่าสัมประสิทธิ์การใช้น้ำของพืชนั้น ๆ (Crop Coefficient: Kc) และข้อมูล อื่น ๆ เกี่ยวกับพืชนั้น ๆ เพื่อประเมินปริมาณการใช้น้ำตามความต้องการของพืชโดยอัตโนมัติ ส่วนที่ 3 ส่วนติดต่อผู้ใช้งานและหน้าจอแสดงผล (User Interface (UI) and Display) เป็นส่วนที่ให้เกษตรกรหรือผู้ใช้งานสามารถป้อนข้อมูลเกี่ยวกับชนิดของพืช ชนิดของดินที่ปลูก ประเภท ของระบบการให้น้ำ จำนวนหัวจ่ายน้ำ ระยะปลูก และช่วงการเจริญเติบโตของพืช เป็นต้น และส่วนที่ 4 หน่วยควบคุมและหัวจ่ายน้ำ (Irrigation Unit)

วัตถุประสงค์

การเปลี่ยนแปลงสภาพอากาศของโลกทวีความรุนแรงขึ้นอย่างต่อเนื่อง สถานการณ์ดังกล่าวส่งผลกระทบ โดยตรงต่อภาคการเกษตร โดยเฉพาะในประเทศไทยที่มีแนวโน้มเผชิญกับปัญหาการขาดแคลนน้ำและความ ผันผวนของปริมาณน้ำฝน ซึ่งส่งผลต่อทั้งปริมาณและคุณภาพของผลผลิตทางการเกษตรโดยตรง ทั้งนี้ การบริหารจัดการน้ำในภาคเกษตรกรรมของประเทศไทยยังคงเผชิญกับข้อจำกัดหลายประการ เกษตรกรส่วนใหญ่ยังคงพึ่งพาประสบการณ์ส่วนตัวในการให้น้ำพืช ซึ่งอาจนำไปสู่การใช้น้ำที่ไม่มีประสิทธิภาพ เช่น การให้น้ำมากเกินความจำเป็นหรือน้อยเกินไปจนส่งผลกระทบต่อผลผลิต หรืออาจนำไปสู่ปัญหา เช่น การแตกใบอ่อน การร่วงของดอก และมีผลผลิตที่ไม่ได้คุณภาพ (Togneri et al., 2023) ในขณะที่ข้อมูลทาง วิชาการที่สามารถช่วยให้การบริหารจัดการน้ำมีความแม่นยำขึ้น เช่น ค่าอัตราการใช้น้ำของพืชอ้างอิง (Evapotranspiration: ETo) และค่าสัมประสิทธิ์พืช (Kc) กลับเข้าถึงได้ยาก เนื่องจากมีความซับซ้อนในการ คำนวณ อีกทั้งข้อมูลที่มีอยู่มักเป็นข้อมูลเฉลี่ยรายจังหวัดซึ่งไม่สามารถนำไปใช้ได้อย่างมีประสิทธิภาพในระดับ ฟาร์ม โครงการนี้จึงมุ่งเน้นไปที่การพัฒนาระบบปัญญาประดิษฐ์สำหรับการติดตามและควบคุมการให้น้ำพืชอัจฉริยะ โดยอิงข้อมูลสภาพอากาศซึ่งจะช่วยแก้ไขข้อจำกัดของเกษตรกรไทยในการเข้าถึงข้อมูลที่ ถูกต้องและการบริหารจัดการน้ำที่แม่นยำ

นวัตกรรมอื่น ๆ

SignGen: โปรแกรมสร้างวิดีโอภาษามือไทยโดยใช้โมเดลภาษาขนาดใหญ่

คณะวิศวกรรมศาสตร์

SignGen: โปรแกรมสร้างวิดีโอภาษามือไทยโดยใช้โมเดลภาษาขนาดใหญ่

ระบบสร้างภาษามือไทยเชิงกำเนิดมีเป้าหมายในการพัฒนาแพลตฟอร์ม การสร้างแบบจำลอง 3 มิติและแอนิเมชัน ที่สามารถแปลง ประโยคภาษาไทยเป็นท่าทางภาษามือไทย (TSL) ที่ถูกต้องและเป็นธรรมชาติ โครงการนี้ช่วยเสริมสร้างการสื่อสารสำหรับ ชุมชนผู้บกพร่องทางการได้ยินในประเทศไทย โดยใช้แนวทางที่อิงกับ แลนมาร์ก (Landmark-Based Approach) ผ่านการใช้ Vector Quantized Variational Autoencoder (VQVAE) และ Large Language Model (LLM) ในการสร้างภาษามือ ระบบเริ่มต้นด้วยการ ฝึกโมเดล VQVAE โดยใช้ข้อมูลแลนมาร์กที่สกัดจากวิดีโอภาษามือ เพื่อให้โมเดลเรียนรู้ การแทนค่าแบบแฝง (Latent Representations) ของท่าทางภาษามือไทย หลังจากนั้น โมเดลที่ฝึกแล้วจะถูกใช้เพื่อ สร้างลำดับแลนมาร์กของท่าทางเพิ่มเติม ซึ่งช่วยขยายชุดข้อมูลฝึกโดยอ้างอิงจาก BigSign ThaiPBS Dataset เมื่อชุดข้อมูลได้รับการขยายแล้ว ระบบจะทำการ ฝึก LLM เพื่อสร้างลำดับแลนมาร์กที่ถูกต้องจากข้อความภาษาไทย โดยลำดับแลนมาร์กที่ได้จะถูกนำไปใช้ สร้างแอนิเมชันของโมเดล 3 มิติใน Blender เพื่อให้ได้ท่าทางภาษามือที่ลื่นไหลและเป็นธรรมชาติ โครงการนี้ถูกพัฒนาด้วย Python โดยใช้ MediaPipe สำหรับการสกัดแลนมาร์ก OpenCV สำหรับการประมวลผลภาพแบบเรียลไทม์ และ Blender’s Python API สำหรับสร้างแอนิเมชัน 3 มิติ ด้วยการผสานเทคโนโลยี AI, การเข้ารหัสผ่าน VQVAE และการสร้างแลนมาร์กด้วย LLM ระบบนี้มุ่งหวังที่จะ เชื่อมช่องว่างระหว่างข้อความภาษาไทยและภาษามือไทย เพื่อมอบแพลตฟอร์มการแปลภาษามือแบบโต้ตอบ ในเวลาจริง ให้กับชุมชนผู้บกพร่องทางการได้ยินในประเทศไทย

อิทธิพลของความเค็มต่อคุณภาพของเมล็ดพันธุ์ข้าว

คณะเทคโนโลยีการเกษตร

อิทธิพลของความเค็มต่อคุณภาพของเมล็ดพันธุ์ข้าว

-

การพัฒนาข้าวหอมมะลิโปรตีนสูงโดยการเคลือบด้วยโปรตีนข้าวไอโซเลท

คณะอุตสาหกรรมอาหาร

การพัฒนาข้าวหอมมะลิโปรตีนสูงโดยการเคลือบด้วยโปรตีนข้าวไอโซเลท

ในการพัฒนาผลิตภัณฑ์ข้าวหอมมะลิโปรตีนสูง มีการใช้สารไฮโดรคอลลอยด์คือ HPMC อยู่ที่ 0, 0.25, 0.5 และ 1% w/v และ MD 10% w/v โดยสารไฮคอลลอยด์นี้มีโปรตีนที่ละลายอยู่ 30% w/v นำไปเคลือบข้าวหอมมะลิดิบ พบว่าปริมาณ HPMC ที่แตกต่างกันส่งผลต่อการยึดเกาะของโปรตีนในข้าว จากนั้นนำสารไฮโดรคอลลอยด์ที่สารมารถยึดเกาะบนได้ดีที่สุดคือ 0.25% w/v นำมาหาหาปริมาณที่เหมาะสมในการเคลือบข้าวที่อัตราส่วน 1:3 และ 1:5 ที่ส่งผลต่อ ปริมาณโปรตีน เนื้อสัมผัส สี การอุ้มน้ำ และการยอมรับทางประสาทสัมผัส