การออกแบบและพัฒนาหัวรถจักรไฟฟ้าเพื่อเข้าร่วมการแข่งขัน TRRN Railway Challenge 2025 มุ่งเน้นการพัฒนาศักยภาพในการเรียนรู้และการประยุกต์ใช้ทฤษฎีในภาคปฏิบัติ โดยเน้นการพัฒนาหัวรถจักรให้สามารถพิชิตบททดสอบต่างๆ เช่น อัตราเร่ง ระบบหยุดรถอัตโนมัติ เสียงรบกวน การสั่นสะเทือน การใช้พลังงาน และความทนทาน รวมถึงการพัฒนาทักษะในการเขียนรายงานการออกแบบทางวิศวกรรมเพื่อเสริมสร้างทักษะในการวิเคราะห์และอภิปราย เพื่อให้สามารถผ่านการทดสอบตามกฎเกณฑ์ของการแข่งขันได้อย่างครบถ้วน
การแข่งขัน TRRN Railway Challenge เป็นเวทีที่เปิดโอกาสให้ทีมนักศึกษาและวิศวกรรุ่นใหม่จากทั่วโลกได้ออกแบบและพัฒนาหัวรถจักรไฟฟ้าขนาดเล็กเพื่อนำไปแข่งขันภายใต้เงื่อนไขและข้อกำหนดที่กำหนดไว้ การแข่งขันนี้จัดขึ้นเพื่อส่งเสริมการเรียนรู้เชิงปฏิบัติการและการพัฒนาทักษะทางวิศวกรรมระบบราง ซึ่งเป็นอุตสาหกรรมที่มีบทบาทสำคัญต่อการขนส่งและพัฒนาโครงสร้างพื้นฐานของประเทศต่างๆ 1. พัฒนาศักยภาพนักศึกษาและวิศวกรรุ่นใหม่ ส่งเสริมการเรียนรู้และการประยุกต์ใช้ความรู้ด้านวิศวกรรมระบบรางในสถานการณ์จริง สร้างโอกาสให้ผู้เข้าร่วมฝึกฝนการทำงานเป็นทีมและการแก้ปัญหาอย่างเป็นระบบ ยกระดับมาตรฐานเทคโนโลยีระบบราง 2. ช่วยให้เกิดนวัตกรรมใหม่ในการออกแบบและพัฒนาหัวรถจักรไฟฟ้า กระตุ้นให้เกิดการพัฒนาเทคโนโลยีที่มีประสิทธิภาพสูงขึ้น เช่น ระบบควบคุมอัตโนมัติและการใช้พลังงานอย่างคุ้มค่า 3. เสริมสร้างความสามารถในการแข่งขันในระดับสากล เปิดโอกาสให้นักศึกษาและวิศวกรได้แสดงศักยภาพในเวทีระดับโลก เพิ่มขีดความสามารถของประเทศในการพัฒนาอุตสาหกรรมระบบรางและเทคโนโลยีที่เกี่ยวข้อง 4. เชื่อมโยงความรู้ทางทฤษฎีกับการปฏิบัติจริง ผู้เข้าร่วมจะได้ฝึกฝนทักษะการออกแบบ การวิเคราะห์ และการทดสอบหัวรถจักร ช่วยให้เกิดความเข้าใจเชิงลึกเกี่ยวกับปัจจัยที่ส่งผลต่อสมรรถนะของหัวรถจักร เช่น อัตราเร่ง ระบบเบรก เสียงรบกวน และความทนทาน

คณะเทคโนโลยีการเกษตร
-

คณะเทคโนโลยีสารสนเทศ
การรักษาผู้ป่วยมะเร็งในแผนกเคมีบำบัดของโรงพยาบาลมะเร็งชลบุรีมีขั้นตอนที่ยุ่งยากและไม่สะดวก เนื่องจากกระบวนการส่งผลตรวจเลือดผ่านแอปพลิเคชันไลน์ส่วนตัวของเจ้าหน้าที่ทางการแพทย์ ทำให้การดำเนินงานขาดความคล่องตัว ด้วยเหตุนี้ ผู้วิจัยจึงพัฒนาโปรแกรมบริหารจัดการและติดตามผู้ป่วยมะเร็งในรูปแบบเว็บแอปพลิเคชัน (web-based application) และแอปพลิเคชันไลน์ LINE LIFF (LINE Front-end Framework) เพื่ออำนวยความสะดวกให้กับทั้งบุคลากรทางการแพทย์และผู้ป่วย ระบบเว็บแอปพลิเคชันออกแบบมาเพื่อใช้โดยบุคลากรทางการแพทย์ในการติดตาม นัดหมาย และเก็บข้อมูลผู้ป่วย ส่วนแอปพลิเคชันไลน์ ออกแบบสำหรับผู้ป่วยในการส่งผลตรวจเลือด ดูตารางนัดหมาย บันทึกอาการหลังรับยาเคมีบำบัด บันทึกค่าน้ำหนักของผู้ป่วยทุกสัปดาห์ และแชทบอทสำหรับให้คำปรึกษาแก่ผู้ป่วย ระบบนี้พัฒนาบนพื้นฐานของเทคโนโลยีไคลเอนต์-เซิร์ฟเวอร์ ซึ่งช่วยเพิ่มประสิทธิภาพการวิเคราะห์ข้อมูลและสนับสนุนการวางแผนการรักษาอย่างอัตโนมัติ ส่งผลให้กระบวนการรักษาผู้ป่วยมะเร็งมีความรวดเร็ว ทันสมัย และมีประสิทธิภาพมากยิ่งขึ้น

คณะวิทยาศาสตร์
ด้วยการพัฒนาของเทคโนโลยีทางด้านอวกาศทำให้การสำรวจท้องฟ้าโดยใช้กล้องโทรทรรศน์ที่มีมุมมองกว้างขยายขอบเขตของข้อมูลใหม่ๆ สำหรับการวิจัยดาราศาสตร์โดเมนเวลามากยิ่งขึ้น ทำให้การวิเคราะห์ข้อมูลแบบดั้งเดิมไม่สามารถตอบสนองต่อข้อมูลได้อย่างรวดเร็วและแม่นยำเพียงพอต่อปริมาณข้อมูลที่เพิ่มขึ้นอย่างต่อเนื่อง ดังนั้น การจำแนกประเภทของข้อมูลซีรีส์เวลาอย่างกราฟแสงจึงเป็นความท้าทายอย่างมากในยุคที่ข้อมูลมีขนาดใหญ่ ในปัจจุบันการวิเคราะห์กราฟแสงจึงจำเป็นต้องใช้เทคนิคการเรียนรู้ของเครื่องเข้ามาช่วยในการวิเคราะห์ คัดกรองข้อมูลอันมหาศาลอย่างหลีกเลี่ยงไม่ได้ โดยอัลกอริทึมการเรียนรู้ของเครื่องแบ่งออกได้ 2 ประเภท คือ แบบตื้นและแบบลึก นักวิจัยหลายๆ ท่านได้นำเสนอวิธีการและการพัฒนาอัลกอริทึมหลากหลายรูปแบบสำหรับการจำแนกประเภทของกราฟแสง ซึ่งในงานนี้เราได้ทำการทดลองใช้ Support Vector Machine (SVM) และ XGBoost ซึ่งเป็นอัลกอริทึมการเรียนรู้ของเครื่องประเภทแบบตื้น และ 1D-CNN และ Long Short-Term Memory (LSTM) ซึ่งเป็นอัลกอริทึมการเรียนรู้เชิงลึกเป็นอีกหนึ่งสาขาของการเรียนรู้ของเครื่องที่เป็นประเภทแบบลึก เพื่อใช้ในการจำแนกประเภทของดาวแปรแสง โดยข้อมูลที่ใช้ในการอบรบและทดสอบ คือ ข้อมูล Optical Gravitational Lensing Experiment-III (OGLE-III) เป็นข้อมูลของดาวแปรแสง โดยอยู่ในพื้นที่ Large Magellanic Cloud (LMC) ที่มีการแบ่งได้ 5 คลาสหลักส่วนใหญ่ (Classical Cepheids, δ Scutis, eclipsing binaries, RR Lyrae stars และ Long-period variables) ผลลัพธ์แสดงให้เห็นถึงการวิเคราะห์ประสิทธิภาพของการเรียนรู้ของเครื่องแต่ละประเภทที่ใช้กับข้อมูลกราฟแสง อีกทั้งยังชี้ให้เห็นถึงความแม่นยำและค่าสถิติต่างๆ ของการเรียนรู้ของเครื่องที่ใช้ในทดลอง