การออกแบบและพัฒนาหัวรถจักรไฟฟ้าเพื่อเข้าร่วมการแข่งขัน TRRN Railway Challenge 2025 มุ่งเน้นการพัฒนาศักยภาพในการเรียนรู้และการประยุกต์ใช้ทฤษฎีในภาคปฏิบัติ โดยเน้นการพัฒนาหัวรถจักรให้สามารถพิชิตบททดสอบต่างๆ เช่น อัตราเร่ง ระบบหยุดรถอัตโนมัติ เสียงรบกวน การสั่นสะเทือน การใช้พลังงาน และความทนทาน รวมถึงการพัฒนาทักษะในการเขียนรายงานการออกแบบทางวิศวกรรมเพื่อเสริมสร้างทักษะในการวิเคราะห์และอภิปราย เพื่อให้สามารถผ่านการทดสอบตามกฎเกณฑ์ของการแข่งขันได้อย่างครบถ้วน
การแข่งขัน TRRN Railway Challenge เป็นเวทีที่เปิดโอกาสให้ทีมนักศึกษาและวิศวกรรุ่นใหม่จากทั่วโลกได้ออกแบบและพัฒนาหัวรถจักรไฟฟ้าขนาดเล็กเพื่อนำไปแข่งขันภายใต้เงื่อนไขและข้อกำหนดที่กำหนดไว้ การแข่งขันนี้จัดขึ้นเพื่อส่งเสริมการเรียนรู้เชิงปฏิบัติการและการพัฒนาทักษะทางวิศวกรรมระบบราง ซึ่งเป็นอุตสาหกรรมที่มีบทบาทสำคัญต่อการขนส่งและพัฒนาโครงสร้างพื้นฐานของประเทศต่างๆ 1. พัฒนาศักยภาพนักศึกษาและวิศวกรรุ่นใหม่ ส่งเสริมการเรียนรู้และการประยุกต์ใช้ความรู้ด้านวิศวกรรมระบบรางในสถานการณ์จริง สร้างโอกาสให้ผู้เข้าร่วมฝึกฝนการทำงานเป็นทีมและการแก้ปัญหาอย่างเป็นระบบ ยกระดับมาตรฐานเทคโนโลยีระบบราง 2. ช่วยให้เกิดนวัตกรรมใหม่ในการออกแบบและพัฒนาหัวรถจักรไฟฟ้า กระตุ้นให้เกิดการพัฒนาเทคโนโลยีที่มีประสิทธิภาพสูงขึ้น เช่น ระบบควบคุมอัตโนมัติและการใช้พลังงานอย่างคุ้มค่า 3. เสริมสร้างความสามารถในการแข่งขันในระดับสากล เปิดโอกาสให้นักศึกษาและวิศวกรได้แสดงศักยภาพในเวทีระดับโลก เพิ่มขีดความสามารถของประเทศในการพัฒนาอุตสาหกรรมระบบรางและเทคโนโลยีที่เกี่ยวข้อง 4. เชื่อมโยงความรู้ทางทฤษฎีกับการปฏิบัติจริง ผู้เข้าร่วมจะได้ฝึกฝนทักษะการออกแบบ การวิเคราะห์ และการทดสอบหัวรถจักร ช่วยให้เกิดความเข้าใจเชิงลึกเกี่ยวกับปัจจัยที่ส่งผลต่อสมรรถนะของหัวรถจักร เช่น อัตราเร่ง ระบบเบรก เสียงรบกวน และความทนทาน

คณะแพทยศาสตร์
งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาระบบโครงข่ายประสาทเทียมแบบคอนโวลูชัน (Deep Convolutional Neural Networks - CNNs) สำหรับการระบุเม็ดยาอย่างแม่นยำ เพื่อแก้ไขข้อจำกัดของการพิสูจน์เอกลักษณ์เม็ดยาด้วยทรัพยากรมนุษย์ โดยใช้ข้อมูลรูปภาพจำนวน 1,250 ภาพ จากยาสามัญประจำบ้าน 10 ชนิด นำมาทดสอบกับโมเดล YOLO ที่แตกต่างกันภายใต้เงื่อนไขต่างๆ ผลการทดลองพบว่า การใช้แสงธรรมชาติให้ผลดีกว่าเมื่อทดสอบด้วยระบบโครงข่ายประสาทเทียมแบบคอนโวลูชัน เมื่อเปรียบเทียบกับแสงจากกล่องสตูดิโอ นอกจากนี้ โมเดล YOLOv5-tiny แสดงความแม่นยำสูงสุดในการตรวจจับเม็ดยา ขณะที่โมเดล EfficientNet_b0 ให้ผลลัพธ์ดีที่สุดในการจำแนกเม็ดยา แม้ว่าระบบโครงข่ายประสาทเทียมแบบคอนโวลูชันที่พัฒนาขึ้นนี้จะให้ผลลัพธ์ที่น่าพึงพอใจ แต่ยังมีข้อจำกัดในเรื่องชนิดของเม็ดยาและจำนวนภาพที่ใช้ในการศึกษา อย่างไรก็ตาม งานวิจัยนี้มีศักยภาพในการส่งเสริมความปลอดภัยในการใช้ยาทั้งในระบบสาธารณสุขและผู้ป่วยนอก รวมถึงลดปัญหาที่อาจเกิดขึ้นจากการใช้ยาผิดพลาด

วิทยาเขตชุมพรเขตรอุดมศักดิ์
ทุเรียนเป็นพืชเศรษฐกิจสำคัญของประเทศไทยที่ได้รับผลกระทบจากโรคทางใบ เช่น โรคใบสนิม ใบไหม้ และใบจุด ซึ่งส่งผลให้คุณภาพผลผลิตลดลงและเพิ่มต้นทุนการจัดการ งานวิจัยนี้มุ่งเน้นการพัฒนาซอฟต์แวร์ AI สำหรับตรวจคัดกรองโรคใบทุเรียน โดยประยุกต์ใช้เทคโนโลยีการเรียนรู้เชิงลึกในการจำแนกชนิดของรอยโรคในใบทุเรียน

คณะวิทยาศาสตร์
การใช้เทคโนโลยีการสื่อสารแบบ LoRa ในการเกษตร