KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Design and development of electric locomotive for TRRN Railway Challenge 2025

Abstract

The design and development of an electric locomotive for the TRRN Railway Challenge 2025 aims to enhance learning potential and apply various theories in practical settings. The focus is on developing the locomotive to pass various tests, including acceleration, automatic braking system, noise, vibration, energy consumption, and durability throughout the competition. Additionally, the project helps improve skills in writing engineering design reports, which enables students to develop their analytical and discussion abilities in order to successfully complete each test according to the competition rules.

Objective

การแข่งขัน TRRN Railway Challenge เป็นเวทีที่เปิดโอกาสให้ทีมนักศึกษาและวิศวกรรุ่นใหม่จากทั่วโลกได้ออกแบบและพัฒนาหัวรถจักรไฟฟ้าขนาดเล็กเพื่อนำไปแข่งขันภายใต้เงื่อนไขและข้อกำหนดที่กำหนดไว้ การแข่งขันนี้จัดขึ้นเพื่อส่งเสริมการเรียนรู้เชิงปฏิบัติการและการพัฒนาทักษะทางวิศวกรรมระบบราง ซึ่งเป็นอุตสาหกรรมที่มีบทบาทสำคัญต่อการขนส่งและพัฒนาโครงสร้างพื้นฐานของประเทศต่างๆ 1. พัฒนาศักยภาพนักศึกษาและวิศวกรรุ่นใหม่ ส่งเสริมการเรียนรู้และการประยุกต์ใช้ความรู้ด้านวิศวกรรมระบบรางในสถานการณ์จริง สร้างโอกาสให้ผู้เข้าร่วมฝึกฝนการทำงานเป็นทีมและการแก้ปัญหาอย่างเป็นระบบ ยกระดับมาตรฐานเทคโนโลยีระบบราง 2. ช่วยให้เกิดนวัตกรรมใหม่ในการออกแบบและพัฒนาหัวรถจักรไฟฟ้า กระตุ้นให้เกิดการพัฒนาเทคโนโลยีที่มีประสิทธิภาพสูงขึ้น เช่น ระบบควบคุมอัตโนมัติและการใช้พลังงานอย่างคุ้มค่า 3. เสริมสร้างความสามารถในการแข่งขันในระดับสากล เปิดโอกาสให้นักศึกษาและวิศวกรได้แสดงศักยภาพในเวทีระดับโลก เพิ่มขีดความสามารถของประเทศในการพัฒนาอุตสาหกรรมระบบรางและเทคโนโลยีที่เกี่ยวข้อง 4. เชื่อมโยงความรู้ทางทฤษฎีกับการปฏิบัติจริง ผู้เข้าร่วมจะได้ฝึกฝนทักษะการออกแบบ การวิเคราะห์ และการทดสอบหัวรถจักร ช่วยให้เกิดความเข้าใจเชิงลึกเกี่ยวกับปัจจัยที่ส่งผลต่อสมรรถนะของหัวรถจักร เช่น อัตราเร่ง ระบบเบรก เสียงรบกวน และความทนทาน

Other Innovations

Photoelectrochemical sensor for salbutamol detection using molecular imprinted-polymer technique with CuO/g-C₃N₄ nanocomposite

วิทยาลัยเทคโนโลยีและนวัตกรรมวัสดุ

Photoelectrochemical sensor for salbutamol detection using molecular imprinted-polymer technique with CuO/g-C₃N₄ nanocomposite

The photoelectrochemical detection of salbutamol, which is illicitly used as a lean meat promoter in pigs, is investigated using a molecularly imprinted polymer (MIP)-based sensor with a CuO/g-C₃N₄ nanocomposite to enhance detection performance, leveraging nanomaterials and molecular imprinting for high selectivity and sensitivity. This approach offers a promising strategy for the precise and efficient analysis of salbutamol in food samples.

Read more
A Unified Framework for Automated Captioning and Damage Segmentation in Car Damage Analysis

คณะเทคโนโลยีสารสนเทศ

A Unified Framework for Automated Captioning and Damage Segmentation in Car Damage Analysis

This research presents a deep learning method for generating automatic captions from the segmentation of car part damage. It analyzes car images using a Unified Framework to accurately and quickly identify and describe the damage. The development is based on the research "GRiT: A Generative Region-to-text Transformer for Object Understanding," which has been adapted for car image analysis. The improvement aims to make the model generate precise descriptions for different areas of the car, from damaged parts to identifying various components. The researchers focuses on developing deep learning techniques for automatic caption generation and damage segmentation in car damage analysis. The aim is to enable precise identification and description of damages on vehicles, there by increasing speed and reducing the work load of experts in damage assessment. Traditionally, damage assessment relies solely on expert evaluations, which are costly and time-consuming. To address this issue, we propose utilizing data generation for training, automatic caption creation, and damage segmentation using an integrated framework. The researchers created a new dataset from CarDD, which is specifically designed for cardamage detection. This dataset includes labeled damages on vehicles, and the researchers have used it to feed into models for segmenting car parts and accurately labeling each part and damage category. Preliminary results from the model demonstrate its capability in automatic caption generation and damage segmentation for car damage analysis to be satisfactory. With these results, the model serves as an essential foundation for future development. This advancement aims not only to enhance performance in damage segmentation and caption generation but also to improve the model’s adaptability to a diversity of damages occurring on various surfaces and parts of vehicles. This will allow the system to be applied more broadly to different vehicle types and conditions of damage inthe future

Read more
Sweepsaga

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Sweepsaga

This app encourages users to clean by turning it into a fun game. Users can choose cleaning tasks, track dust levels, and earn reward points, making the cleaning process more engaging and enjoyable.

Read more