The design and development of an electric locomotive for the TRRN Railway Challenge 2025 aims to enhance learning potential and apply various theories in practical settings. The focus is on developing the locomotive to pass various tests, including acceleration, automatic braking system, noise, vibration, energy consumption, and durability throughout the competition. Additionally, the project helps improve skills in writing engineering design reports, which enables students to develop their analytical and discussion abilities in order to successfully complete each test according to the competition rules.
การแข่งขัน TRRN Railway Challenge เป็นเวทีที่เปิดโอกาสให้ทีมนักศึกษาและวิศวกรรุ่นใหม่จากทั่วโลกได้ออกแบบและพัฒนาหัวรถจักรไฟฟ้าขนาดเล็กเพื่อนำไปแข่งขันภายใต้เงื่อนไขและข้อกำหนดที่กำหนดไว้ การแข่งขันนี้จัดขึ้นเพื่อส่งเสริมการเรียนรู้เชิงปฏิบัติการและการพัฒนาทักษะทางวิศวกรรมระบบราง ซึ่งเป็นอุตสาหกรรมที่มีบทบาทสำคัญต่อการขนส่งและพัฒนาโครงสร้างพื้นฐานของประเทศต่างๆ 1. พัฒนาศักยภาพนักศึกษาและวิศวกรรุ่นใหม่ ส่งเสริมการเรียนรู้และการประยุกต์ใช้ความรู้ด้านวิศวกรรมระบบรางในสถานการณ์จริง สร้างโอกาสให้ผู้เข้าร่วมฝึกฝนการทำงานเป็นทีมและการแก้ปัญหาอย่างเป็นระบบ ยกระดับมาตรฐานเทคโนโลยีระบบราง 2. ช่วยให้เกิดนวัตกรรมใหม่ในการออกแบบและพัฒนาหัวรถจักรไฟฟ้า กระตุ้นให้เกิดการพัฒนาเทคโนโลยีที่มีประสิทธิภาพสูงขึ้น เช่น ระบบควบคุมอัตโนมัติและการใช้พลังงานอย่างคุ้มค่า 3. เสริมสร้างความสามารถในการแข่งขันในระดับสากล เปิดโอกาสให้นักศึกษาและวิศวกรได้แสดงศักยภาพในเวทีระดับโลก เพิ่มขีดความสามารถของประเทศในการพัฒนาอุตสาหกรรมระบบรางและเทคโนโลยีที่เกี่ยวข้อง 4. เชื่อมโยงความรู้ทางทฤษฎีกับการปฏิบัติจริง ผู้เข้าร่วมจะได้ฝึกฝนทักษะการออกแบบ การวิเคราะห์ และการทดสอบหัวรถจักร ช่วยให้เกิดความเข้าใจเชิงลึกเกี่ยวกับปัจจัยที่ส่งผลต่อสมรรถนะของหัวรถจักร เช่น อัตราเร่ง ระบบเบรก เสียงรบกวน และความทนทาน

คณะแพทยศาสตร์
This study explores the application of deep convolutional neural networks (CNNs) for accurate pill identification, addressing the limitations of traditional human-based methods. Using a dataset of 1,250 images across 10 household remedy drugs, various CNN architectures, including YOLO models, were tested under different conditions. Results showed that natural lighting was optimal for imprinted pills, while a lightbox improved detection for plain pills. The YOLOv5-tiny model demonstrated the best detection accuracy, and efficientNet_b0 achieved the highest classification performance. While the model showed strong results, its generalization is limited by sample size and drug variability. Nonetheless, this approach holds promise for enhancing medication safety and reducing errors in outpatient care.

คณะบริหารธุรกิจ
This research aimed to develop the mixed tea from longan peels and seeds. Population studied were longan farmers who planted longan and preserved the longan product in Ampur Wang Nam Yen, Sa Kaeo Province. From the results, it was found that from By-product in the production of dehydrated longan, longan peels and seeds, which can be processed into ready-to-drink powdered tea. This not only helps reduce waste from the production process but also contributes to generating additional income from these by-products.

คณะวิศวกรรมศาสตร์
-