เนื่องจากไซโลเก็บข้าวอินทรีย์เผชิญกับปัญหาแมลง เจ้าของจึงแก้ไขปัญหานี้โดยใช้ระบบผู้เชี่ยวชาญ (ES) ในกระบวนการควบคุมบรรยากาศ (CAP) ภายใต้มาตรฐานที่กำหนด โดยทำการรมแมลงด้วยไนโตรเจน (N₂) และลดความเข้มข้นของออกซิเจน (O₂) ให้น้อยกว่า 2% เป็นเวลา 21 วัน บทความนี้นำเสนอการใช้พลศาสตร์ของไหลเชิงคำนวณ (CFD) ร่วมกับ ES ซึ่งสามารถแก้ไขปัญหานี้ได้อย่างมีประสิทธิภาพ ขั้นแรก CFD ถูกนำมาใช้เพื่อวิเคราะห์รูปแบบการไหลของก๊าซ ความเข้มข้นของ O₂ สภาวะการทำงานที่เหมาะสม และค่าสัมประสิทธิ์การแก้ไข (K) ของไซโล ซึ่งผลลัพธ์ของ CFD สอดคล้องกับผลการทดลองและทฤษฎี ยืนยันความน่าเชื่อถือของ CFD อย่างมีนัยสำคัญ นอกจากนี้ ผลการวิเคราะห์ของ CFD ยังแสดงให้เห็นว่า ES สามารถควบคุมการกระจายตัวของไนโตรเจนภายในไซโลได้อย่างทั่วถึงและลดความเข้มข้นของ O₂ ให้เป็นไปตามข้อกำหนด จากนั้น ระบบ ES ถูกพัฒนาขึ้นโดยอาศัยกลไกการวินิจฉัย (Inference Engine) ที่ได้รับการสนับสนุนจากผลลัพธ์ของ CFD และหลักการกวาดผ่านเพื่อล้าง (Sweep-Through Purging) ก่อนจะนำไปใช้ในกระบวนการ CAP สุดท้าย การทดลองถูกดำเนินการเพื่อประเมินประสิทธิภาพของ CAP ในการควบคุมความเข้มข้นของ O₂ และกำจัดแมลงภายในไซโลจริง ผลการทดลองและข้อเสนอแนะจากเจ้าของยืนยันว่า การนำ ES ไปใช้มีประสิทธิภาพสูง จึงทำให้ CAP เป็นกระบวนการที่มีประสิทธิผลและสามารถนำไปใช้ได้จริง ความแปลกใหม่ของงานวิจัยนี้อยู่ที่การใช้วิธีการ CFD ในการสร้างกลไกการวินิจฉัยและพัฒนาระบบผู้เชี่ยวชาญ (ES)
การเก็บรักษาข้าวใน ไซโลเก็บข้าวอินทรีย์ เป็นแนวทางสำคัญในการรักษาคุณภาพข้าวและลดการสูญเสียหลังการเก็บเกี่ยว อย่างไรก็ตาม ปัญหาการปนเปื้อนของแมลงศัตรูข้าว เป็นอุปสรรคสำคัญที่ส่งผลกระทบต่อคุณภาพและความปลอดภัยของข้าว โดยทั่วไป การกำจัดแมลงในไซโลมักใช้สารรมยาเคมี เช่น ฟอสฟีน (PH₃) หรือ เมทิลโบรไมด์ (CH₃Br) ซึ่งอาจก่อให้เกิดสารตกค้าง ส่งผลต่อสุขภาพผู้บริโภค และสร้างผลกระทบต่อสิ่งแวดล้อม

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
ผลงานศิลปนิพนธ์หัวข้อเรื่อง “สงครามในม่านหมอก” เป็นการนำเสนอเรื่องราวที่ดัดแปลงมาจากเรื่องสั้นชื่อเดียวกันของ ผศ. ชาติณรงค์ วิสุตกุล เมื่อปี 2546 เกี่ยวกับโลกอนาคตที่ผู้คนแก่งแย่งและเห็นแก่ตัวจนก่อให้เกิดสงครามทำให้ผู้คนต้องพึ่งพา “เครื่องหายใจ” ในการใช้เพื่ออยู่รอดใน “หมอกพิษสีแดง” ภาคิน เด็กหนุ่มวัย 15 ต้องเดินทางร่วมกับกลุ่มผู้อพยพ พวกเขาเดินทางผ่านเมืองร้าง และบังเอิญพบเข้ากับเด็กชายไร้เครื่องหายใจที่พึ่งกำพร้าพ่อ ภาคินตัดสินใจช่วยเหลือ แม้คนอื่นจะไม่เห็นด้วยก็ตาม เด็กชายพยายามจะปลิดชีวิตตัวเองโดยการปิดเครื่องหายใจ ภาคินที่เข้าไปยื้อชีวิตเด็กกลับหมดสติลงจากการหายใจเอาอากาศพิษเข้าไป คนอื่น ๆ ที่เห็นสิ่งที่ภาคินทำเพื่อช่วยเพื่อนมนุษย์ ได้สำนึกและร่วมมือกันช่วยชีวิตทั้งสอง ภาคินทำให้ทุกคนรู้ว่า ในช่วงเวลาที่ยากลำบาก มนุษย์เราต้องร่วมมือ ช่วยเหลือกันไม่ใช่แตกแยก และเห็นแก่ตัว

คณะเทคโนโลยีสารสนเทศ
การตรวจจับอารมณ์ผ่านการแสดงออกทางใบหน้า (Facial Expression Recognition, FER) ได้รับความสนใจอย่างมากในหลายสาขา เช่น การดูแลสุขภาพ การให้บริการลูกค้า และการวิเคราะห์พฤติกรรม อย่างไรก็ตาม ความท้าทายยังคงอยู่ที่การพัฒนาระบบที่มีความทนทานและสามารถรับมือกับการเปลี่ยนแปลงของสภาพแวดล้อมรวมถึงสถานการณ์ที่หลากหลายได้ ผู้วิจัยได้นำเสนอการใช้เทคนิค Ensemble Learning เพื่อรวมผลลัพธ์จากโมเดลหลายตัวที่ถูกฝึกในเงื่อนไขเฉพาะ ทำให้ระบบไม่ลืมข้อมูลเก่า และยังสามารถเรียนรู้ข้อมูลใหม่ได้อย่างมีประสิทธิภาพ โดยเทคนิคนี้มีข้อได้เปรียบในด้านเวลาและทรัพยากรที่ใช้ในการเทรน เนื่องจากช่วยลดความจำเป็นในการสร้างโมเดลใหม่ทั้งหมดเมื่อมีสภาพแวดล้อมใหม่ เพียงเพิ่มโมเดลเฉพาะทางใหม่ในระบบ Ensemble ซึ่งใช้ทรัพยากรน้อยกว่าแทน ในงานวิจัยนี้ Ensemble Learning ถูกแบ่งออกเป็นสองแนวทางหลัก คือ การเฉลี่ยผลลัพธ์จากโมเดลเฉพาะทางที่ถูกฝึกภายใต้สถานการณ์เฉพาะ (Averaging Ensemble) และการใช้เทคนิค Mixture of Experts (MoE) ซึ่งเป็นการผสมผสานโมเดลหลายตัวที่เชี่ยวชาญในสถานการณ์ต่าง ๆ ไว้ด้วยกัน ผลการทดลองแสดงให้เห็นว่า การใช้ Mixture of Experts (MoE) มีประสิทธิภาพสูงกว่าวิธี Averaging Ensemble ในการจำแนกอารมณ์ในทุกสถานการณ์ โดยระบบ MoE สามารถเพิ่มความแม่นยำเฉลี่ยได้ถึง 84.41% บนชุดข้อมูล CK+, 54.20% บน Oulu-CASIA และ 61.66% บน RAVDESS ซึ่งสูงกว่าวิธี Averaging Ensemble ที่มีความแม่นยำเฉลี่ยที่ 71.64%, 44.99% และ 57.60% ตามลำดับ ผลลัพธ์เหล่านี้แสดงให้เห็นว่า MoE สามารถเลือกโมเดลที่เชี่ยวชาญในสถานการณ์เฉพาะได้อย่างแม่นยำ และยังช่วยเพิ่มความสามารถในการรับมือกับสภาพแวดล้อมที่ซับซ้อนกว่า

คณะเทคโนโลยีการเกษตร
โครงการนี้ได้สร้างระบบดูแลต้นไม้ในหอพักผ่านระบบ IoT ( Internet of Things ) โดยการพัฒนาโปรแกรมผ่านบอร์ด ESP-32 ควบคุมการรดน้ำต้นไม้อัตโนมัติ โดยสั่งการผ่าน สมาร์ทโฟน สามารถใช้งานระบบปฏิบัติการทั้ง iOS และ Android โครงการนี้จะช่วยให้การปลูกต้นไม้ในหอพักเป็นเรื่องง่ายและสะดวกมากยิ่งขึ้น