โครงงานนี้พัฒนาตู้รับซื้ออัตโนมัติสำหรับขวดพลาสติกและกระป๋อง โดยใช้ Machine Learning ในการจำแนกประเภทบรรจุภัณฑ์ผ่านการประมวลผลภาพ ร่วมกับระบบเซนเซอร์อัจฉริยะในการตรวจสอบคุณภาพของบรรจุภัณฑ์และควบคุมการทำงาน ระบบเชื่อมต่อกับ Web Application เพื่อแสดงผลและควบคุมการทำงานแบบเรียลไทม์ เมื่อยืนยันประเภทบรรจุภัณฑ์แล้ว จะคำนวณราคาและจ่ายเงินผ่าน e-wallet หรือออกคูปองแลกเงินสดโดยอัตโนมัติ ระบบนี้สามารถติดตั้งในพื้นที่สาธารณะเพื่อส่งเสริมการคัดแยกขยะตั้งแต่ต้นทาง ช่วยลดการปนเปื้อนและเพิ่มประสิทธิภาพการรีไซเคิล อีกทั้งยังสร้างแรงจูงใจทางการเงินให้ประชาชนมีส่วนร่วมในการจัดการขยะมากขึ้น โครงงานนี้แสดงให้เห็นถึงศักยภาพของการผสมผสาน Machine Learning และระบบเซนเซอร์อัจฉริยะในการพัฒนาโซลูชันการจัดการขยะที่แม่นยำ สะดวก และยั่งยืน **
ปัจจุบันปัญหาขยะเป็นหนึ่งในปัญหาสิ่งแวดล้อมที่มีผลกระทบต่อทั้งมนุษย์และธรรมชาติ โดยเฉพาะอย่างยิ่งการจัดการขยะพลาสติกและกระป๋องที่ยังคงเป็นปัญหาหลักในการรีไซเคิล ขยะเหล่านี้มักจะถูกทิ้งในสถานที่ไม่เหมาะสม หรือถูกแยกประเภทผิด ทำให้กระบวนการรีไซเคิลไม่สามารถทำได้อย่างมีประสิทธิภาพและเต็มที่ นอกจากนี้การคัดแยกขยะจากต้นทางยังไม่เป็นที่นิยมและยังขาดระบบที่มีความสะดวกสบายและเข้าถึงง่ายสำหรับประชาชนทั่วไป ในปัจจุบันมีการพัฒนาเทคโนโลยีที่ช่วยในกระบวนการคัดแยกขยะ โดยเฉพาะการใช้ Machine Learning และระบบเซนเซอร์อัจฉริยะในการจำแนกประเภทบรรจุภัณฑ์ผ่านการประมวลผลภาพ ซึ่งมีศักยภาพในการเพิ่มประสิทธิภาพของกระบวนการคัดแยกขยะและลดข้อผิดพลาดจากการแยกประเภทขยะที่ไม่ถูกต้อง นอกจากนี้ยังสามารถสร้างแรงจูงใจให้ประชาชนมีส่วนร่วมในการจัดการขยะได้ผ่านการให้ผลตอบแทนทางการเงิน เช่น การจ่ายเงินผ่าน e-wallet หรือออกคูปองแลกเงินสด โครงงานนี้จึงมีความสำคัญในการนำเทคโนโลยี Machine Learning และระบบเซนเซอร์อัจฉริยะมาประยุกต์ใช้ในการพัฒนาระบบตู้รับซื้ออัตโนมัติที่สามารถคัดแยกและรีไซเคิลขวดพลาสติกและกระป๋องได้อย่างมีประสิทธิภาพและสะดวกสบาย สร้างแรงจูงใจในการรีไซเคิลและมีส่วนช่วยในการแก้ไขปัญหาขยะในระดับสาธารณะ

คณะวิทยาศาสตร์
วาเนเดียมไดออกไซด์เป็นวัสดุเปลี่ยนเฟส โดยคุณสมบัติเฉพาะคือโครงสร้างผลึกจะเปลี่ยนแปลงเมื่อเพิ่มความร้อนจนถึงอุณหภูมิเปลี่ยนเฟสและโครงสร้างจะเปลี่ยนเฟสกลับเมื่อลดอุณหภูมิให้ต่ำกว่าอุณหภูมิเปลี่ยนเฟส หากเทียบกับวัสดุทั่วไปแล้วการเปลี่ยนเฟสจะส่งผลให้คุณสมบัติทางแสงเปลี่ยนแปลงไปอย่างมาก เราสามารถใช้คุณสมบัตินี้ในการออกแบบอุปกรณ์ฟิล์มบางเพื่อการใช้งานเป็นโหมดได้ ในงานวิจัยนี้ ผู้ทำได้เลือกอุปกรณ์ฟิล์มบางสองประเภทที่ทำจากวาเนเดียมไดออกไซด์ มาออกแบบเพื่อเพิ่มโครงสร้างสั่นพ้องแบบไม่สมมาตรขึ้นมาใหม่ โดยโครงสร้างถูกออกแบบมาเพื่อเพิ่มประสิทธิภาพของชั้นวาเนเดียมไดออกไซด์ที่อยู่ตรงกลาง และมีลักษณะลดการสะท้อนในโหมดการทำงานปกติ อภิปรายถึงช่องสั่นพ้อง, ปัญหาที่เกิดขึ้นเมื่อใช้วัสดุเปลี่ยนเฟส, ข้อดีและข้อจำกัดของวิธีการออกแบบใหม่นี้ด้วย

คณะวิศวกรรมศาสตร์
โครงการนี้จัดทำขึ้นเพื่อตอบสนองความต้องการในการพัฒนาทักษะและองค์ความรู้ด้านระบบนิวเมติกส์และการควบคุมอัตโนมัติ ซึ่งเป็นหัวใจสำคัญในอุตสาหกรรมการผลิตในปัจจุบัน โดยระบบนิวเมติกส์มีบทบาทสำคัญในกระบวนการผลิตหลายประเภท เช่น การควบคุมเครื่องจักร อุปกรณ์อัตโนมัติ และระบบสายการผลิต อย่างไรก็ตาม ภาควิชาวิศวกรรมวัดคุมไม่มีห้องปฏิบัติการที่รองรับการศึกษาและทดลองเกี่ยวกับระบบนิวเมติกส์ เนื่องจากอุปกรณ์เดิมที่เคยใช้เกิดการชำรุดและไม่ได้รับการซ่อมแซม ทำให้นักศึกษาขาดโอกาสในการฝึกฝนทักษะที่สำคัญต่อการทำงานในภาคอุตสาหกรรม คณะผู้จัดทำเห็นถึงความจำเป็นในการฟื้นฟูและพัฒนาห้องปฏิบัติการนิวเมติกส์ให้สามารถตอบโจทย์การเรียนการสอนและการวิจัยได้อย่างมีประสิทธิภาพ โดยปริญญานิพนธ์นี้มุ่งเน้นการศึกษาและพัฒนาระบบควบคุมแขนกลอุตสาหกรรมและระบบนิวเมติกส์ ควบคู่ไปกับการบูรณาการเทคโนโลยีสมัยใหม่ เช่น PLC (Programmable Logic Controller) และ AI Vision ซึ่งสามารถนำไปประยุกต์ใช้งานจริงในบริบทอุตสาหกรรม ผลการดำเนินงานในโครงการนี้นอกจากจะช่วยเสริมสร้างความเข้าใจในเทคโนโลยีที่เกี่ยวข้องแล้ว ยังมุ่งหวังที่จะพัฒนาห้องปฏิบัติการให้กลายเป็นแหล่งเรียนรู้ที่สำคัญสำหรับนักศึกษารุ่นปัจจุบันและรุ่นถัดไป รวมถึงเพิ่มขีดความสามารถในการแข่งขันของนักศึกษาในตลาดแรงงาน พร้อมทั้งสนับสนุนการพัฒนานวัตกรรมในอุตสาหกรรมการผลิตต่อไปในอนาคต

คณะวิศวกรรมศาสตร์
โครงการสหกิจนี้มีวัตถุประสงค์เพื่อปรับปรุงประสิทธิภาพกระบวนการผลิต Hydrogen Manufacturing Unit 2 (HMU-2) และ Pressure Swing Adsorption 3 (PSA-3) โดยการใช้แบบจำลองกระบวนการ AVEVA Pro/II และ แบบจำลอง Machine Learning เพื่อจำลองกระบวนการ ผลการศึกษาพบว่า แบบจำลอง AVEVA Pro/II สามารถทำนายผลลัพธ์ โดยมีความคลาดเคลื่อนอยู่ในช่วง 0–35% มีความคลาดเคลื่อนของอัตราการไหลของไฮโดรเจนจากหน่วย PSA สูงถึง 12% เกินเกณฑ์ 10% ที่บริษัทยอมรับได้ จึงได้พัฒนาแบบจำลอง Machine Learning โดยการปรับไฮเปอร์พารามิเตอร์ของอัลกอริทึมแบบ Random Forest ผลการศึกษาพบว่าแบบจำลองมีความแม่นยำสูง มีค่า Mean Squared Error (MSE) มีค่า 8.48 และ 0.18 สำหรับข้อมูลกระบวนการ และ ข้อมูลห้องปฏิบัติการ และ R-squared มีค่า 0.98 และ 0.88 สำหรับข้อมูลชุดเดียวกัน และพบว่าสามารถทำนายผลลัพธ์ได้แม่นยำกว่าแบบจำลอง AVEVA Pro/II ในทุกๆ ตัวแปร สามารถลดความคลาดเคลื่อนของอัตราการไหลของไฮโดรเจนจากหน่วย PSA เหลือเพียง 4.75 และ 1.35% สำหรับอัตราการผลิต 180 และ 220 ตันต่อวันตามลำดับ จึงได้นำแบบจำลองมาทำการ Optimization ตัวแปรกระบวนการ พบว่าสามารถให้ข้อแนะนำในการปรับค่าตัวแปรต่างๆ ได้ โดยสามารถเพิ่มผลผลิตไฮโดรเจนได้ 7.8 ตันต่อวัน และสร้างผลกำไรเพิ่มขึ้น 850,966.23 บาทต่อปี