This research focuses on the design and development of a prototype Artificial Intelligence of Things (AIoT) system for monitoring and controlling irrigation using weather information. The system consists of four main components: 1) Weather Station – This component includes various sensors such as air temperature, relative humidity, wind speed, and sunlight duration, among others, to collect real-time weather data. 2) Controller Unit – This unit is equipped with machine learning algorithms or models to estimate the reference evapotranspiration (ETo) and calculate the plant’s water requirement by integrating the crop coefficient (Kc) with other plant-related data. This enables the system to determine the optimal irrigation amount based on plant needs automatically. 3) User Interface (UI) and Display – This section allows farmers or users to input relevant information, such as plant type, soil type, irrigation system type, number of water emitters, planting distance, and growth stages. It also provides a display for monitoring and interaction with the system. 4) Irrigation Unit – This component is responsible for controlling the water supply and managing the irrigation emitters to ensure efficient water distribution based on the calculated requirements.
การเปลี่ยนแปลงสภาพอากาศของโลกทวีความรุนแรงขึ้นอย่างต่อเนื่อง สถานการณ์ดังกล่าวส่งผลกระทบ โดยตรงต่อภาคการเกษตร โดยเฉพาะในประเทศไทยที่มีแนวโน้มเผชิญกับปัญหาการขาดแคลนน้ำและความ ผันผวนของปริมาณน้ำฝน ซึ่งส่งผลต่อทั้งปริมาณและคุณภาพของผลผลิตทางการเกษตรโดยตรง ทั้งนี้ การบริหารจัดการน้ำในภาคเกษตรกรรมของประเทศไทยยังคงเผชิญกับข้อจำกัดหลายประการ เกษตรกรส่วนใหญ่ยังคงพึ่งพาประสบการณ์ส่วนตัวในการให้น้ำพืช ซึ่งอาจนำไปสู่การใช้น้ำที่ไม่มีประสิทธิภาพ เช่น การให้น้ำมากเกินความจำเป็นหรือน้อยเกินไปจนส่งผลกระทบต่อผลผลิต หรืออาจนำไปสู่ปัญหา เช่น การแตกใบอ่อน การร่วงของดอก และมีผลผลิตที่ไม่ได้คุณภาพ (Togneri et al., 2023) ในขณะที่ข้อมูลทาง วิชาการที่สามารถช่วยให้การบริหารจัดการน้ำมีความแม่นยำขึ้น เช่น ค่าอัตราการใช้น้ำของพืชอ้างอิง (Evapotranspiration: ETo) และค่าสัมประสิทธิ์พืช (Kc) กลับเข้าถึงได้ยาก เนื่องจากมีความซับซ้อนในการ คำนวณ อีกทั้งข้อมูลที่มีอยู่มักเป็นข้อมูลเฉลี่ยรายจังหวัดซึ่งไม่สามารถนำไปใช้ได้อย่างมีประสิทธิภาพในระดับ ฟาร์ม โครงการนี้จึงมุ่งเน้นไปที่การพัฒนาระบบปัญญาประดิษฐ์สำหรับการติดตามและควบคุมการให้น้ำพืชอัจฉริยะ โดยอิงข้อมูลสภาพอากาศซึ่งจะช่วยแก้ไขข้อจำกัดของเกษตรกรไทยในการเข้าถึงข้อมูลที่ ถูกต้องและการบริหารจัดการน้ำที่แม่นยำ

คณะอุตสาหกรรมอาหาร
The activities of the project's operations consist of: checking microbe on sample food, hygienic condition of cooker, containers and materials, sanitation knowledge and private sanitation and food quality of canteen and cleaning of cooker. The Food Safety Management program collaborated with the Property Management office, planned the operations, and assessed food vendors based on the SAN 20 food safety standards requirements. Using A.13 testing kits, we conducted testing for coliform bacteria contamination in food, containers, equipment, and hand contact surfaces, collecting 6 samples. These included samples such as prepared food, areas in front of the store, and food handlers' hands. Additionally, we used A.11 testing kits to test for coliform bacteria contamination in water and ice. The analysis of results, including physical, microbiological, and chemical aspects, serve as a guideline for improving the quality and safety of food production and service in the institution's canteen.

คณะเทคโนโลยีการเกษตร
"Eco Mango Pack: Eco-friendly Packaging for a Sustainable Future" focuses on developing innovative packaging for Nam Dok Mai mangoes, considering fruit safety, shelf life, and environmental impact. The selected materials include a box made from coconut husk, and dry water hyacinth stems have been utilized as internal cushioning to enhance shock resistance. Additionally, dried coffee grounds are incorporated into the packaging to extend the mango's shelf life. The design also takes into account the needs of small-scale farmers, making the packaging suitable for community enterprise production and reducing production costs. This project aims to add value to Thai agricultural products, support the circular economy concept, and promote the use of environmentally friendly materials in the packaging industry.

คณะวิทยาศาสตร์
This special project aims to develop and compare the performance of gold price prediction models using quantitative variables and news text data. The study incorporates nine key predictors, including Brent crude oil prices, WTI crude oil prices, silver prices, platinum prices, the U.S. Federal Reserve's policy interest rate, the Nikkei 225 index, the Dow Jones Industrial Average, the S&P 500 index, and daily news articles from Bangkok Business News. Relevant news data will be processed using Natural Language Processing (NLP) techniques and integrated with three predictive models: Gradient Boosting, Machine Learning Models, and Regression Analysis. The model performance will be evaluated using three key metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the Coefficient of Determination (R*). This research aims to develop a predictive model that effectively utilizes both quantitative variables and news data to enhance gold price forecasting, providing valuable insights for investors and analysts.