This research focuses on the design and development of a prototype Artificial Intelligence of Things (AIoT) system for monitoring and controlling irrigation using weather information. The system consists of four main components: 1) Weather Station – This component includes various sensors such as air temperature, relative humidity, wind speed, and sunlight duration, among others, to collect real-time weather data. 2) Controller Unit – This unit is equipped with machine learning algorithms or models to estimate the reference evapotranspiration (ETo) and calculate the plant’s water requirement by integrating the crop coefficient (Kc) with other plant-related data. This enables the system to determine the optimal irrigation amount based on plant needs automatically. 3) User Interface (UI) and Display – This section allows farmers or users to input relevant information, such as plant type, soil type, irrigation system type, number of water emitters, planting distance, and growth stages. It also provides a display for monitoring and interaction with the system. 4) Irrigation Unit – This component is responsible for controlling the water supply and managing the irrigation emitters to ensure efficient water distribution based on the calculated requirements.
การเปลี่ยนแปลงสภาพอากาศของโลกทวีความรุนแรงขึ้นอย่างต่อเนื่อง สถานการณ์ดังกล่าวส่งผลกระทบ โดยตรงต่อภาคการเกษตร โดยเฉพาะในประเทศไทยที่มีแนวโน้มเผชิญกับปัญหาการขาดแคลนน้ำและความ ผันผวนของปริมาณน้ำฝน ซึ่งส่งผลต่อทั้งปริมาณและคุณภาพของผลผลิตทางการเกษตรโดยตรง ทั้งนี้ การบริหารจัดการน้ำในภาคเกษตรกรรมของประเทศไทยยังคงเผชิญกับข้อจำกัดหลายประการ เกษตรกรส่วนใหญ่ยังคงพึ่งพาประสบการณ์ส่วนตัวในการให้น้ำพืช ซึ่งอาจนำไปสู่การใช้น้ำที่ไม่มีประสิทธิภาพ เช่น การให้น้ำมากเกินความจำเป็นหรือน้อยเกินไปจนส่งผลกระทบต่อผลผลิต หรืออาจนำไปสู่ปัญหา เช่น การแตกใบอ่อน การร่วงของดอก และมีผลผลิตที่ไม่ได้คุณภาพ (Togneri et al., 2023) ในขณะที่ข้อมูลทาง วิชาการที่สามารถช่วยให้การบริหารจัดการน้ำมีความแม่นยำขึ้น เช่น ค่าอัตราการใช้น้ำของพืชอ้างอิง (Evapotranspiration: ETo) และค่าสัมประสิทธิ์พืช (Kc) กลับเข้าถึงได้ยาก เนื่องจากมีความซับซ้อนในการ คำนวณ อีกทั้งข้อมูลที่มีอยู่มักเป็นข้อมูลเฉลี่ยรายจังหวัดซึ่งไม่สามารถนำไปใช้ได้อย่างมีประสิทธิภาพในระดับ ฟาร์ม โครงการนี้จึงมุ่งเน้นไปที่การพัฒนาระบบปัญญาประดิษฐ์สำหรับการติดตามและควบคุมการให้น้ำพืชอัจฉริยะ โดยอิงข้อมูลสภาพอากาศซึ่งจะช่วยแก้ไขข้อจำกัดของเกษตรกรไทยในการเข้าถึงข้อมูลที่ ถูกต้องและการบริหารจัดการน้ำที่แม่นยำ

คณะวิทยาศาสตร์
Atopic dermatitis patients are the second largest number among skin disease patients. There is no cure for atopic dermatitis, and it can only be treated to relieve symptoms, causing chronic disease. There is a chance that opportunistic infections will enter and cause more disease from the patient's wound, causing the patient to have complications from other infections. This study is interested in studying the reduction of the chance of opportunistic infections in patients with atopic dermatitis using natural extracts. The interest is in Plu Kaow and long pepper because there is data supporting the inhibition of microorganisms. The leaves of both plants are crudely extracted, soaked in 95% ethanol for 7 days, filtered with a Buchner filter, and the extracts are tested for phytochemicals to analyze phenolic components, flavonoids, tannins, anthocyanin, DPPH, and tested for antimicrobial properties. The experiments consisted of 5 types of gram-positive and gram-negative bacteria: E. coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. The researcher expects that this can be further developed and used to treat patients with atopic dermatitis.

คณะอุตสาหกรรมอาหาร
Plant-based refers to food or products that are primarily made from plants. It can be divided into two categories: one is food that comes entirely from plants and does not include any animal products, and the other is food that contains small amounts of animal products, such as products that contain milk and eggs in limited quantities, which may also be considered part of the definition of plant-based. Plant-based meat products that closely resemble real meat and attract consumers are considered a relatively new innovation. Although tofu, tempeh, and seitan have been around for a long time, recent discoveries have led to the production of plant-based meat products that provide a sensory experience, making it difficult for consumers to distinguish between real meat and plant-based meat. Furthermore, the development of plant-based food products must prioritize quality and safety to maximize consumer benefits. Textured Vegetable Protein (TVP) is a plant-based protein made from soybeans using an extruder. It is used as a primary ingredient in the production of plant-based food products due to several advantages. These include: • High Protein Content: TVP is made from soybeans with the fat extracted, resulting in a high protein content. • Texture: When rehydrated, TVP has a texture that closely resembles meat. • Versatility: TVP has a neutral flavor, allowing it to easily absorb the flavors of various seasonings and sauces. • Cost-Effectiveness: Compared to other protein sources, TVP is relatively inexpensive while providing desirable characteristics. These benefits make TVP an attractive option in the production of plant-based foods. This study focuses on developing TVP into a plant-based crab cake and investigating the shelf life of the product in a tightly sealed container under refrigeration. It also analyzes the hygiene and cleanliness of the production process and how these factors affect the presence or growth of microorganisms that may pose a risk to consumers, referencing the cold food safety standards of Thailand. Finally, recommendations for cleaning operational areas will be provided to establishments as a guideline for developing preliminary food safety procedures in laboratory settings.

คณะวิศวกรรมศาสตร์
This research project focuses on the design and development of a Manual Control Robot using Load Cell technology to enhance precision and reduce the time required for robot control. The use of automation robots in industries still presents challenges due to the complexity of programming and control. Therefore, developing a manual control system that responds to force input in all directions can significantly improve the efficiency of robots, making them more suitable for tasks requiring precise and intricate control. The study integrates Load Cell sensors, an HX711 amplifier circuit, and an Arduino UNO R3 to develop a control module that translates user-applied forces into commands for an RV-7FRL-D industrial robotic arm. Additionally, MATLAB is utilized for processing Load Cell data to analyze and optimize the robot’s movement accuracy. The results demonstrate that the developed system effectively reduces robot setup time while simplifying and improving control flexibility. This project represents a crucial step in enhancing the capabilities of industrial robots, allowing for seamless human-robot interaction through a manual control system that directly responds to user-applied forces.