KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Artificial intelligence of things system for monitoring and controlling irrigation using weather information

Abstract

This research focuses on the design and development of a prototype Artificial Intelligence of Things (AIoT) system for monitoring and controlling irrigation using weather information. The system consists of four main components: 1) Weather Station – This component includes various sensors such as air temperature, relative humidity, wind speed, and sunlight duration, among others, to collect real-time weather data. 2) Controller Unit – This unit is equipped with machine learning algorithms or models to estimate the reference evapotranspiration (ETo) and calculate the plant’s water requirement by integrating the crop coefficient (Kc) with other plant-related data. This enables the system to determine the optimal irrigation amount based on plant needs automatically. 3) User Interface (UI) and Display – This section allows farmers or users to input relevant information, such as plant type, soil type, irrigation system type, number of water emitters, planting distance, and growth stages. It also provides a display for monitoring and interaction with the system. 4) Irrigation Unit – This component is responsible for controlling the water supply and managing the irrigation emitters to ensure efficient water distribution based on the calculated requirements.

Objective

การเปลี่ยนแปลงสภาพอากาศของโลกทวีความรุนแรงขึ้นอย่างต่อเนื่อง สถานการณ์ดังกล่าวส่งผลกระทบ โดยตรงต่อภาคการเกษตร โดยเฉพาะในประเทศไทยที่มีแนวโน้มเผชิญกับปัญหาการขาดแคลนน้ำและความ ผันผวนของปริมาณน้ำฝน ซึ่งส่งผลต่อทั้งปริมาณและคุณภาพของผลผลิตทางการเกษตรโดยตรง ทั้งนี้ การบริหารจัดการน้ำในภาคเกษตรกรรมของประเทศไทยยังคงเผชิญกับข้อจำกัดหลายประการ เกษตรกรส่วนใหญ่ยังคงพึ่งพาประสบการณ์ส่วนตัวในการให้น้ำพืช ซึ่งอาจนำไปสู่การใช้น้ำที่ไม่มีประสิทธิภาพ เช่น การให้น้ำมากเกินความจำเป็นหรือน้อยเกินไปจนส่งผลกระทบต่อผลผลิต หรืออาจนำไปสู่ปัญหา เช่น การแตกใบอ่อน การร่วงของดอก และมีผลผลิตที่ไม่ได้คุณภาพ (Togneri et al., 2023) ในขณะที่ข้อมูลทาง วิชาการที่สามารถช่วยให้การบริหารจัดการน้ำมีความแม่นยำขึ้น เช่น ค่าอัตราการใช้น้ำของพืชอ้างอิง (Evapotranspiration: ETo) และค่าสัมประสิทธิ์พืช (Kc) กลับเข้าถึงได้ยาก เนื่องจากมีความซับซ้อนในการ คำนวณ อีกทั้งข้อมูลที่มีอยู่มักเป็นข้อมูลเฉลี่ยรายจังหวัดซึ่งไม่สามารถนำไปใช้ได้อย่างมีประสิทธิภาพในระดับ ฟาร์ม โครงการนี้จึงมุ่งเน้นไปที่การพัฒนาระบบปัญญาประดิษฐ์สำหรับการติดตามและควบคุมการให้น้ำพืชอัจฉริยะ โดยอิงข้อมูลสภาพอากาศซึ่งจะช่วยแก้ไขข้อจำกัดของเกษตรกรไทยในการเข้าถึงข้อมูลที่ ถูกต้องและการบริหารจัดการน้ำที่แม่นยำ

Other Innovations

Revolutionizing pill identification by using deep convolutional neural network based on widely-used essential household remedy drugs

คณะแพทยศาสตร์

Revolutionizing pill identification by using deep convolutional neural network based on widely-used essential household remedy drugs

This study explores the application of deep convolutional neural networks (CNNs) for accurate pill identification, addressing the limitations of traditional human-based methods. Using a dataset of 1,250 images across 10 household remedy drugs, various CNN architectures, including YOLO models, were tested under different conditions. Results showed that natural lighting was optimal for imprinted pills, while a lightbox improved detection for plain pills. The YOLOv5-tiny model demonstrated the best detection accuracy, and efficientNet_b0 achieved the highest classification performance. While the model showed strong results, its generalization is limited by sample size and drug variability. Nonetheless, this approach holds promise for enhancing medication safety and reducing errors in outpatient care.

Read more
COSTS RETURNS OF RICE CULTIVATION USING CHEMICAL PESTICIDES AND RICE CULTIVATION USING BIOPRODUCTS IN COMBINATION WITH CHEMICAL PESTICIDES BY FARMERS IN BANG PHLI NOI SUBDISTRICT BANG BO DISTRICT SAMUT PRAKAN PROVINCE

คณะเทคโนโลยีการเกษตร

COSTS RETURNS OF RICE CULTIVATION USING CHEMICAL PESTICIDES AND RICE CULTIVATION USING BIOPRODUCTS IN COMBINATION WITH CHEMICAL PESTICIDES BY FARMERS IN BANG PHLI NOI SUBDISTRICT BANG BO DISTRICT SAMUT PRAKAN PROVINCE

During this cooperative education program at the Bang Bo District Agricultural Office, Samut Prakan Province, a study was conducted on the costs and returns of rice cultivation using chemical inputs compared to using biopesticides in combination with chemical inputs among farmers in Bang Phli Noi Subdistrict, Bang Bo District, Samut Prakan Province.The objectives of this study were: To examine the costs and returns of rice cultivation using chemical inputs compared to using biopesticides in combination with chemical inputs among farmers in Bang Phli Noi Subdistrict, Bang Bo District, Samut Prakan Province. To explore the challenges of using biopesticides in rice cultivation among farmers in Bang Phli Noi Subdistrict, Bang Bo District, Samut Prakan Province. The study found that in the 2024/25 growing season, the total production cost for rice cultivation using biopesticides in combination with chemical inputs was 5,099.50 THB per rai, consisting of variable costs of 4,432.50 THB per rai and fixed costs of 667.00 THB per rai. Meanwhile, the total production cost for rice cultivation using only chemical inputs was 5,129.00 THB per rai, consisting of variable costs of 4,390.00 THB per rai and fixed costs of 739.00 THB per rai. The cost difference between the two methods was 114.50 THB per rai. Regarding the returns on rice cultivation in the 2024/25 growing season, the field using biopesticides in combination with chemical inputs yielded 1,000.00 kilograms per rai, with an average selling price of 8,500.00 THB per rai. Farmers earned a total revenue of 8,585.00 THB per rai and a profit of 3,485.50 THB per rai. On the other hand, the field using only chemical inputs yielded 1,000.00 kilograms per rai, with an average selling price of 8,500.00 THB per rai. Farmers earned a total revenue of 8,500.00 THB per rai and a profit of 3,371.00 THB per rai. The total income difference between the two cultivation methods was 114.50 THB per rai. In terms of challenges related to the procurement of biopesticides, it was found that biopesticides are difficult to obtain, with limited or no availability in certain areas. Additionally, relevant agencies do not provide continuous support for biopesticides, making this the most significant issue. Regarding the use of biopesticides, the most critical challenge is that once fresh biopesticides are mixed, they must be used immediately and cannot be stored, as their effectiveness deteriorates over time.

Read more
Living Market Agricultural design

คณะเทคโนโลยีการเกษตร

Living Market Agricultural design

The design site of 22 hectares of agricultural land in this area is located in Tatata District, Iglenburg Province. The design concept of this area aims to encourage farmers and communities to earn income from the agricultural products produced in this area, and emphasizes that this area is a "living market", which can not only create food from a variety of crops, but also establish a balanced ecosystem and promote biodiversity in this area. The market will become a sustainable market area, which is not only beneficial to society in promoting economy, but also beneficial to the environment. The area will serve as a social and learning center, where community members can fully exchange agricultural information and experience and stimulate the economy in the community in another way.

Read more