ปัญหาพิเศษนี้มีวัตถุประสงค์เพื่อศึกษาและเปรียบเทียบประสิทธิภาพการทำนายดัชนีคุณภาพอากาศ (AQI) ด้วยวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่ม 5 วิธี ได้แก่ วิธีป่าสุ่ม วิธี XGBoost วิธี CatBoost วิธีรวมกลุ่มป่าสุ่มและ XGBoost และวิธีรวมกลุ่มป่าสุ่ม SVR และ MLP โดยใช้ชุดข้อมูลจากกรมควบคุมมลพิษกลางของประเทศอินเดีย (CPCB) ซึ่งชุดข้อมูลประกอบด้วยตัวแปรด้านมลพิษ 15 ตัวแปร และข้อมูลด้านสภาพอากาศ 9 ตัวแปร เก็บรวบรวมตั้งแต่มกราคม ค.ศ. 2021 ถึงธันวาคม ค.ศ. 2023 มีจำนวนข้อมูล 1,024,920 ค่า และวิธีการที่ใช้วัดประสิทธิภาพ 3 วิธี ได้แก่ รากของค่าคลาดเคลื่อนกำลังสองเฉลี่ย (Root Mean Square Error : RMSE) ค่าคลาดเคลื่อนสัมบูรณ์เฉลี่ย (Mean Absolute Error : MAE) และสัมประสิทธิ์การกำหนด (Coefficient of Determination) ผลการศึกษาพบว่าวิธีรวมกลุ่มป่าสุ่มและ XGBoost มีค่าวัดประสิทธิภาพทั้ง 3 วิธีดีที่สุด โดยมีค่า RMSE น้อยที่สุดเท่ากับ 0.1040 ค่า MAE น้อยที่สุดเท่ากับ 0.0675 และค่า มากที่สุดเท่ากับ 0.8128 แล้วทำการอธิบายผลลัพธ์จากการเรียนรู้ของเครื่องสำหรับสร้างแผนภาพด้วย SHAP ของวิธีการเรียนรู้ของเครื่องทั้ง 5 วิธี ทุกวิธีได้ข้อสรุปในทำนองเดียวกันคือตัวแปรที่มีผลกระทบต่อ ค่าทำนายโดยรวมมากที่สุด 2 อันดับแรกคือตัวแปร PM2.5 และ PM10 ตามลำดับ
ทั่วโลกกำลังเผชิญกับวิกฤตมลพิษทางอากาศที่รุนแรงที่สุดในประวัติศาสตร์ การเพิ่มขึ้นของสารมลพิษในอากาศ เช่น ฝุ่นละอองขนาดเล็ก PM2.5 PM10 ก๊าซโอโซน ก๊าซคาร์บอนมอนอกไซด์ ไนโตรเจนไดออกไซด์ และซัลเฟอร์ไดออกไซด์ ซึ่งส่งผลกระทบต่อระบบทางเดินหายใจและระบบไหลเวียนโลหิตของมนุษย์ นอกจากนี้ยังมีผลกระทบทางลบต่อพืชและสัตว์ในระบบนิเวศอีกด้วย หลายพื้นที่ทั่วโลกเผชิญกับค่า PM2.5 เกินมาตรฐานอย่างต่อเนื่อง องค์การอนามัยโลก (World Health Organization : WHO) ประกาศเตือนว่า PM2.5 เป็นสารก่อมะเร็ง ส่งผลให้เกิดโรคทางเดินหายใจ โรคหัวใจ และโรคหลอดเลือดสมอง PM2.5 เป็นมลพิษทางอากาศที่อันตรายที่สุด ส่งผลต่อระบบทางเดินหายใจและเพิ่มความเสี่ยงต่อมะเร็งปอด สถิติปี 2020 มีผู้เสียชีวิตจากมะเร็งปอด 1.79 ล้านคน และคาดว่าจำนวนผู้เสียชีวิตจะเพิ่มมากขึ้นทุกปีอย่างต่อเนื่อง ดัชนีคุณภาพอากาศ (Air Quality Index : AQI) เป็นตัวชี้วัดสำคัญในการประเมินคุณภาพอากาศและบ่งชี้ถึงระดับของมลพิษ โดยใช้ข้อมูลความเข้มข้นของมลพิษในอากาศคำนวณเป็นค่าดัชนีคุณภาพอากาศที่ช่วยให้ประชาชนทราบถึงระดับความปลอดภัยของอากาศ ดังนั้นหากในชีวิตประจำวันสามารถทำนายดัชนีคุณภาพอากาศได้ ประชาชนจะสามารถวางแผนการเดินทางหรือการทำกิจกรรมกลางแจ้ง โดยหลีกเลี่ยงบริเวณที่มีมลพิษสูงได้ โดยเฉพาะกลุ่มเสี่ยง เช่น ผู้สูงอายุ เด็กเล็ก และผู้ป่วยเรื้อรัง ในช่วงหลายปีที่ผ่านมา มีงานวิจัยที่ได้พัฒนาวิธีการทำนายดัชนีคุณภาพอากาศโดยนักวิจัยได้ประยุกต์ใช้วิธีการเรียนรู้ของเครื่อง (Machine Learning) เพื่อการทำนายคุณภาพอากาศให้ดียิ่งขึ้น ในงานวิจัยนี้ คณะผู้วิจัยจึงมีความสนใจนำวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่มมาใช้ในการทำนายดัชนีคุณภาพอากาศ จากการทบทวนวรรณกรรมเกี่ยวกับงานวิจัยที่เกี่ยวข้อง คณะผู้วิจัยพบว่าในงานวิจัยของ Zhang et al. (2023) ที่ศึกษาในกลุ่มเมืองของจีน 6 แห่ง ด้วยข้อมูลมลพิษและสภาพอากาศ พบได้ว่าวิธีป่าสุ่มมีประสิทธิภาพดีที่สุดเมื่อวัดด้วย MAE ต่อมาในงานวิจัยของ Dao et al. (2022) ที่ได้ใช้ข้อมูลมลพิษในอินเดีย พบว่าวิธี XGBoost มีประสิทธิภาพดีที่สุด เช่นเดียวกับงานวิจัยของ Kumar and Pande (2023) ในขณะที่ Ravindiran et al. (2023) ได้ศึกษาด้วยข้อมูลมลพิษและสภาพอากาศในรัฐอานธรประเทศ พบว่าวิธี CatBoost มีประสิทธิภาพดีที่สุด และอีก 2 งานวิจัยที่ได้อาศัยแนวทางการรวมกลุ่มแบบ Stacking ได้แก่ งานวิจัยของ Sharma et al. (2024) ที่ศึกษาในหลายเมืองของอินเดียโดยได้ใช้วิธีการรวมกลุ่มของต้นไม้ตัดสินใจหลายวิธี หนึ่งในนั้นคือวิธีการรวมกลุ่มป่าสุ่มและ XGBoost ซึ่งก็พบว่าวิธีดังกล่าวมีประสิทธิภาพดีที่สุด และ Emeç and Yurtsever (2024) ได้ศึกษาการทำนายความเข้มข้นของ PM2.5 ซึ่งเป็นหนึ่งในมลพิษสำคัญที่ส่งผลต่อดัชนีคุณภาพอากาศของเมืองอิสตันบลูและปักกิ่งโดยใช้วิธีการเรียนรู้ของเครื่อง 3 วิธีมารวมกันเป็นวิธีรวมกลุ่มป่าสุ่ม, SVR และ MLP พบว่าวิธีนี้มีประสิทธิภาพดีกว่าการใช้ทั้ง 3 วิธีแยกกัน ดังนั้นคณะผู้วิจัยจึงสนใจนำวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่มทั้ง 5 วิธี ได้แก่ วิธีป่าสุ่ม วิธี XGBoost วิธี CatBoost วิธีรวมกลุ่มป่าสุ่มและ XGBoost และวิธีรวมกลุ่มป่าสุ่ม, SVR และ MLP โดยใช้ข้อมูลเกี่ยวกับค่ามลพิษและสภาพอากาศจากสถานีตรวจวัดในรัฐเดลี ประเทศอินเดีย ซึ่งเป็นพื้นที่ที่มีปัญหาด้านคุณภาพอากาศเป็นอันดับต้น ๆ ของโลก โดยใช้ข้อมูลตั้งแต่วันที่ 1 มกราคม 2021 ถึง 31 ธันวาคม 2023 และวิธีการวัดประสิทธิภาพ 3 วิธี ได้แก่ รากของค่าคลาดเคลื่อนกำลังสองเฉลี่ย ค่าคลาดเคลื่อนสัมบูรณ์เฉลี่ย และสัมประสิทธิ์การกำหนด (Coefficient of Determination) เปรียบเทียบประสิทธิภาพของวิธีการต่าง ๆ และระบุแนวทางที่เหมาะสมที่สุดในการทำนายดัชนีคุณภาพอากาศ

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
ด้วยสถานการณ์ “ค่าครองชีพ” ของประเทศไทยในปัจจุบันมีแนวโน้มพุ่งขึ้นสูงเรื่อยๆ เป็นผลทำให้ประชากรที่พึ่งสำเร็จการศึกษา ประสบกับปัญหาเรื่องการจัดการค่าใช้จ่ายให้สอดคล้องกับค่าครองชีพอย่างเหมาะสมในปัจจุบัน ซึ่งค่าใช้จ่ายเรื่องอาหารที่แม้แต่ตามสั่งทั่วไปก็พุ่งสูงขึ้นเรื่อยเรื่อยไม่มีท่าทีจะลดลงแม้ต้นทุนวัตถุดิบจะปรับปรุงก็ตาม Pay - Attention เป็นเว็บไซต์แพลต์ฟอร์มที่จะช่วยให้ทราบถึงการบริหารจัดการ การใส่ใจเรื่องค่าใช้จ่ายสำหรับการบริโภคอาหารเบื้องต้นสำหรับเด็กจบใหม่ จับจ่ายใช้สอยอย่างไร ให้คุ้มค่า คุ้มราคา เพียงพอต่อความต้องการใช้พลังงานสำหรับชีวิตประจำวันโดยไม่จำเจ

คณะวิทยาศาสตร์
งานวิจัยนี้ได้นำเสนอการวิเคราะห์เชิงสี (Colorimetric detection) สำหรับตรวจวัดกรดแทนนิก (tannic acid) ในตัวอย่างเครื่องดื่มจากพืช โดยอาศัยปรากฏการณ์การแทนที่ (displacement phenomenon) ของสารรักษาเสถียรภาพบนพื้นผิวของอนุภาคแพลทินัมนาโน (PtNPs) ที่ถูกรักษาเสถียรภาพด้วยกรดแกลลิก (gallic acid) ซึ่งกรดแกลลิกสามารถรักษาเสถียรภาพของ PtNPs ให้อยู่ในรูปของอนุภาคที่รวมตัวกันและให้สารคอลลอยด์ที่เป็นสีเขียว โดยกรดแทนนิกสามารถแทนที่กรดแกลลิกบนพื้นผิวของ PtNPs ได้ง่าย ส่งผลให้อนุภาคที่รวมตัวกันเกิดการกระจายตัวและเปลี่ยนสีจากเขียวเป็นส้ม−น้ำตาล และภายใต้สภาวะที่เหมาะสม ตัวตรวจวัดเชิงสีแสดงค่าการตอบสนองเชิงเส้นในช่วงความเข้มข้น 1−2,000 µmol L⁻¹ (R² = 0.9991) โดยมีขีดจำกัดในการตรวจวัด (LOD) และขีดจำกัดเชิงปริมาณ (LOQ) ที่ 0.02 และ 0.09 µmol L⁻¹ ตามลำดับ ตัวตรวจวัดเชิงสีที่พัฒนาขึ้นมีความจำเพาะสูงต่อกรดแทนนิกและไม่ถูกรบกวนจากสารอื่น อีกทั้งยังมีค่าความแม่นยำที่ดี (RSD = 1.00%−3.36%) ที่สำคัญคือ ให้ค่าการคืนกลับ (recovery) อยู่ในช่วง 95.0−104.7% แสดงให้เห็นถึงศักยภาพของเซนเซอร์คัลเลอริเมตริกที่สามารถตรวจวัดกรดแทนนิกได้อย่างรวดเร็วและแม่นยำในตัวอย่างเครื่องดื่มจริง แม้ว่าวิธีการตรวจวัดกรดแทนนิกที่ถูกพัฒนาขึ้นจะเป็นเทคนิคที่รวดเร็วในการตรวจวัดกรดแทนนิก แต่ยังคงมีปัญหาเกี่ยวกับความไว (sensitivity) และความแม่นยำ (accuracy) ของการวิเคราะห์ โดยเฉพาะเมื่อมีสารแอนโทไซยานิน (anthocyanin) รบกวน ดังนั้น จึงพัฒนาวิธีเตรียมตัวอย่างเพื่อย่อยสลายแอนโทไซยานินในเครื่องดื่มเพื่อลดการรบกวนของสารที่มีสีต่อการตรวจวัดเชิงสีสำหรับวิเคราะห์ปริมาณกรดแทนนิกในเครื่องดื่ม

วิทยาเขตชุมพรเขตรอุดมศักดิ์
โครงงานนี้จัดทำขึ้นเพื่อออกแบบ และพัฒนาระบบติดตามดวงตาเพื่อช่วยเหลือการสื่อสารสำหรับผู้ป่วยอัมพาตที่ไม่สามารถเคลื่อนไหวร่างกายได้ ระบบนี้มีวัตถุประสงค์เพื่อให้ผู้ป่วยสามารถสื่อสาร หรือบอกความต้องการกับผู้ดูแล หรือสมาชิกในครอบครัวด้วยวิธีการตรวจจับและติดตามดวงตาด้วยอุปกรณ์ Tobii Eye Tracker 5 วิธีการนี้เป็นการสื่อสารแทนการขยับร่างกาย หรือการพูดของผู้ป่วยอัมพาต ระบบสามารถตรวจจับและติดตามดวงตาที่ระยะสายตา 55 ถึง 85 เซนติเมตร ระบบถูกออกแบบให้สามารถติดตั้งได้บนคอมพิวเตอร์เพื่อง่ายต่อการใช้งาน หน้าจอของโปรแกรมประกอบด้วย 3 ส่วน 1) ชุดคำสั่งทางความรู้สึก และ 2) ชุดคำสั่งทางความต้องการ 3) ชุดคำสั่งเพิ่มเติม สามารถรับค่าได้จากแป้นพิมพ์เสมือนทั้งภาษาไทยและภาษาอังกฤษ และสามารถระบุความต้องการเพิ่มเติมผ่านการพิมพ์ด้วยการตรวจจับสายตา นอกจากนี้ระบบยังสามารถสร้างเสียงสังเคราะห์จากข้อความที่มีความยากในการอ่านออกเสียง ส่งข้อความแจ้งเตือนไปที่แอปพลิเคชันไลน์ และจัดเก็บข้อมูลการใช้งานบนฐานข้อมูลในรูปแบบแดชบอร์ด จากผลการทดสอบระบบพบว่าระยะทาง 65 ถึง 75 เซนติเมตร เป็นระยะที่ตรวจจับที่ดีที่สุดเนื่องจากมีค่าความคลาดเคลื่อนไม่เกิน 1 เปอร์เซ็นต์ สามารถตอบสนองการมองเพื่อสื่อสารผ่านเสียงตามปุ่มการทำงานต่าง ๆ ได้อย่างถูกต้องโดยใช้เวลา 3 วินาที ระบบนี้สามารถติดตามดวงตาของผู้ป่วยอัมพาตที่ไม่สามารถเคลื่อนไหวร่างกายได้เพื่อช่วยในการสื่อสาร เช่น การแสดงความรู้สึก การแสดงความต้องการ เป็นต้น ซึ่งเป็นวิธีการสื่อสารที่มีประสิทธิภาพต่อผู้ป่วยและผู้ดูแลหรือสมาชิกในครอบครัวให้มีความเข้าใจต่อผู้ป่วยมากยิ่งขึ้น