KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

การทำนายดัชนีคุณภาพอากาศด้วยวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่ม

รายละเอียด

ปัญหาพิเศษนี้มีวัตถุประสงค์เพื่อศึกษาและเปรียบเทียบประสิทธิภาพการทำนายดัชนีคุณภาพอากาศ (AQI) ด้วยวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่ม 5 วิธี ได้แก่ วิธีป่าสุ่ม วิธี XGBoost วิธี CatBoost วิธีรวมกลุ่มป่าสุ่มและ XGBoost และวิธีรวมกลุ่มป่าสุ่ม SVR และ MLP โดยใช้ชุดข้อมูลจากกรมควบคุมมลพิษกลางของประเทศอินเดีย (CPCB) ซึ่งชุดข้อมูลประกอบด้วยตัวแปรด้านมลพิษ 15 ตัวแปร และข้อมูลด้านสภาพอากาศ 9 ตัวแปร เก็บรวบรวมตั้งแต่มกราคม ค.ศ. 2021 ถึงธันวาคม ค.ศ. 2023 มีจำนวนข้อมูล 1,024,920 ค่า และวิธีการที่ใช้วัดประสิทธิภาพ 3 วิธี ได้แก่ รากของค่าคลาดเคลื่อนกำลังสองเฉลี่ย (Root Mean Square Error : RMSE) ค่าคลาดเคลื่อนสัมบูรณ์เฉลี่ย (Mean Absolute Error : MAE) และสัมประสิทธิ์การกำหนด (Coefficient of Determination) ผลการศึกษาพบว่าวิธีรวมกลุ่มป่าสุ่มและ XGBoost มีค่าวัดประสิทธิภาพทั้ง 3 วิธีดีที่สุด โดยมีค่า RMSE น้อยที่สุดเท่ากับ 0.1040 ค่า MAE น้อยที่สุดเท่ากับ 0.0675 และค่า มากที่สุดเท่ากับ 0.8128 แล้วทำการอธิบายผลลัพธ์จากการเรียนรู้ของเครื่องสำหรับสร้างแผนภาพด้วย SHAP ของวิธีการเรียนรู้ของเครื่องทั้ง 5 วิธี ทุกวิธีได้ข้อสรุปในทำนองเดียวกันคือตัวแปรที่มีผลกระทบต่อ ค่าทำนายโดยรวมมากที่สุด 2 อันดับแรกคือตัวแปร PM2.5 และ PM10 ตามลำดับ

วัตถุประสงค์

ทั่วโลกกำลังเผชิญกับวิกฤตมลพิษทางอากาศที่รุนแรงที่สุดในประวัติศาสตร์ การเพิ่มขึ้นของสารมลพิษในอากาศ เช่น ฝุ่นละอองขนาดเล็ก PM2.5 PM10 ก๊าซโอโซน ก๊าซคาร์บอนมอนอกไซด์ ไนโตรเจนไดออกไซด์ และซัลเฟอร์ไดออกไซด์ ซึ่งส่งผลกระทบต่อระบบทางเดินหายใจและระบบไหลเวียนโลหิตของมนุษย์ นอกจากนี้ยังมีผลกระทบทางลบต่อพืชและสัตว์ในระบบนิเวศอีกด้วย หลายพื้นที่ทั่วโลกเผชิญกับค่า PM2.5 เกินมาตรฐานอย่างต่อเนื่อง องค์การอนามัยโลก (World Health Organization : WHO) ประกาศเตือนว่า PM2.5 เป็นสารก่อมะเร็ง ส่งผลให้เกิดโรคทางเดินหายใจ โรคหัวใจ และโรคหลอดเลือดสมอง PM2.5 เป็นมลพิษทางอากาศที่อันตรายที่สุด ส่งผลต่อระบบทางเดินหายใจและเพิ่มความเสี่ยงต่อมะเร็งปอด สถิติปี 2020 มีผู้เสียชีวิตจากมะเร็งปอด 1.79 ล้านคน และคาดว่าจำนวนผู้เสียชีวิตจะเพิ่มมากขึ้นทุกปีอย่างต่อเนื่อง ดัชนีคุณภาพอากาศ (Air Quality Index : AQI) เป็นตัวชี้วัดสำคัญในการประเมินคุณภาพอากาศและบ่งชี้ถึงระดับของมลพิษ โดยใช้ข้อมูลความเข้มข้นของมลพิษในอากาศคำนวณเป็นค่าดัชนีคุณภาพอากาศที่ช่วยให้ประชาชนทราบถึงระดับความปลอดภัยของอากาศ ดังนั้นหากในชีวิตประจำวันสามารถทำนายดัชนีคุณภาพอากาศได้ ประชาชนจะสามารถวางแผนการเดินทางหรือการทำกิจกรรมกลางแจ้ง โดยหลีกเลี่ยงบริเวณที่มีมลพิษสูงได้ โดยเฉพาะกลุ่มเสี่ยง เช่น ผู้สูงอายุ เด็กเล็ก และผู้ป่วยเรื้อรัง ในช่วงหลายปีที่ผ่านมา มีงานวิจัยที่ได้พัฒนาวิธีการทำนายดัชนีคุณภาพอากาศโดยนักวิจัยได้ประยุกต์ใช้วิธีการเรียนรู้ของเครื่อง (Machine Learning) เพื่อการทำนายคุณภาพอากาศให้ดียิ่งขึ้น ในงานวิจัยนี้ คณะผู้วิจัยจึงมีความสนใจนำวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่มมาใช้ในการทำนายดัชนีคุณภาพอากาศ จากการทบทวนวรรณกรรมเกี่ยวกับงานวิจัยที่เกี่ยวข้อง คณะผู้วิจัยพบว่าในงานวิจัยของ Zhang et al. (2023) ที่ศึกษาในกลุ่มเมืองของจีน 6 แห่ง ด้วยข้อมูลมลพิษและสภาพอากาศ พบได้ว่าวิธีป่าสุ่มมีประสิทธิภาพดีที่สุดเมื่อวัดด้วย MAE ต่อมาในงานวิจัยของ Dao et al. (2022) ที่ได้ใช้ข้อมูลมลพิษในอินเดีย พบว่าวิธี XGBoost มีประสิทธิภาพดีที่สุด เช่นเดียวกับงานวิจัยของ Kumar and Pande (2023) ในขณะที่ Ravindiran et al. (2023) ได้ศึกษาด้วยข้อมูลมลพิษและสภาพอากาศในรัฐอานธรประเทศ พบว่าวิธี CatBoost มีประสิทธิภาพดีที่สุด และอีก 2 งานวิจัยที่ได้อาศัยแนวทางการรวมกลุ่มแบบ Stacking ได้แก่ งานวิจัยของ Sharma et al. (2024) ที่ศึกษาในหลายเมืองของอินเดียโดยได้ใช้วิธีการรวมกลุ่มของต้นไม้ตัดสินใจหลายวิธี หนึ่งในนั้นคือวิธีการรวมกลุ่มป่าสุ่มและ XGBoost ซึ่งก็พบว่าวิธีดังกล่าวมีประสิทธิภาพดีที่สุด และ Emeç and Yurtsever (2024) ได้ศึกษาการทำนายความเข้มข้นของ PM2.5 ซึ่งเป็นหนึ่งในมลพิษสำคัญที่ส่งผลต่อดัชนีคุณภาพอากาศของเมืองอิสตันบลูและปักกิ่งโดยใช้วิธีการเรียนรู้ของเครื่อง 3 วิธีมารวมกันเป็นวิธีรวมกลุ่มป่าสุ่ม, SVR และ MLP พบว่าวิธีนี้มีประสิทธิภาพดีกว่าการใช้ทั้ง 3 วิธีแยกกัน ดังนั้นคณะผู้วิจัยจึงสนใจนำวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่มทั้ง 5 วิธี ได้แก่ วิธีป่าสุ่ม วิธี XGBoost วิธี CatBoost วิธีรวมกลุ่มป่าสุ่มและ XGBoost และวิธีรวมกลุ่มป่าสุ่ม, SVR และ MLP โดยใช้ข้อมูลเกี่ยวกับค่ามลพิษและสภาพอากาศจากสถานีตรวจวัดในรัฐเดลี ประเทศอินเดีย ซึ่งเป็นพื้นที่ที่มีปัญหาด้านคุณภาพอากาศเป็นอันดับต้น ๆ ของโลก โดยใช้ข้อมูลตั้งแต่วันที่ 1 มกราคม 2021 ถึง 31 ธันวาคม 2023 และวิธีการวัดประสิทธิภาพ 3 วิธี ได้แก่ รากของค่าคลาดเคลื่อนกำลังสองเฉลี่ย ค่าคลาดเคลื่อนสัมบูรณ์เฉลี่ย และสัมประสิทธิ์การกำหนด (Coefficient of Determination) เปรียบเทียบประสิทธิภาพของวิธีการต่าง ๆ และระบุแนวทางที่เหมาะสมที่สุดในการทำนายดัชนีคุณภาพอากาศ

นวัตกรรมอื่น ๆ

การออกแบบสวนสาธารณะ : Saint Chon College Campus Park

คณะเทคโนโลยีการเกษตร

การออกแบบสวนสาธารณะ : Saint Chon College Campus Park

ต่อยอดจากโปรเจ็คออกแบบสวนสาธารณะ สู่การออกแบบพื้นที่วิทยาเขต บนพื้นที่ 50 กว่าไร่ในตำบลอ่างศิลา อำเภอเมือง จังหวัดชลบุรี เพื่อเป็นทั้งสถานศึกษาและพื้นที่พักผ่อนและให้การเรียนรู้แก่ผู้คนโดยรอบ

โครงสร้างแบบโครงคร่าวแบบรวมสำหรับคำบรรยายอัตโนมัติและการแบ่งส่วนความเสียหายในการวิเคราะห์ความเสียหายของรถยนต์

คณะเทคโนโลยีสารสนเทศ

โครงสร้างแบบโครงคร่าวแบบรวมสำหรับคำบรรยายอัตโนมัติและการแบ่งส่วนความเสียหายในการวิเคราะห์ความเสียหายของรถยนต์

งานวิจัยนี้นำเสนอวิธีการเรียนรู้เชิงลึกเพื่อสร้างคำบรรยายอัตโนมัติจากการแบ่งส่วนความเสียหายของชิ้นส่วนรถยนต์ โดยการวิเคราะห์จากข้อมูลภาพของรถยนต์โดยใช้โครงสร้างแบบโครงคร่าวแบบรวม (Unified Framework) เพื่อช่วยให้สามารถระบุตำแหน่งและอธิบายความเสียหายที่เกิดขึ้นกับรถยนต์ได้อย่างแม่นยำและรวดเร็ว โดยการพัฒนาประยุกต์จากพื้นฐานงานวิจัยที่มีชื่อว่า ”GRiT: A Generative Region-to-text Transformer for Object Understanding” ที่ผู้วิจัยได้ทำการพัฒนาและปรับแต่งให้เหมาะสมกับการวิเคราะห์ภาพที่เกี่ยวข้องกับรถยนต์โดยเฉพาะ การปรับปรุงนี้มีจุดประสงค์เพื่อทำให้แบบจำลองสามารถสร้างคำบรรยายสำหรับบริเวณต่างๆ ของรถยนต์ได้อย่างแม่นยำ ตั้งแต่บริเวณที่ได้รับความเสียหายไปจนถึงการระบุส่วนประกอบต่างๆ บนรถยนต์ ทางผู้วิจัยได้เน้นการพัฒนาเทคนิคการเรียนรู้เชิงลึกเพื่อสร้างคำบรรยายอัตโนมัติและการแบ่งส่วนความเสียหายในการวิเคราะห์ความเสียหายของรถยนต์ เพื่อช่วยให้สามารถระบุตำแหน่งและอธิบายความเสียหายที่เกิดขึ้นกับยานยนต์ได้อย่างแม่นยำ ช่วยเพิ่มความรวดเร็ว ลดภาระของผู้เชี่ยวชาญในการประเมินความเสียหาย โดยวิธีการเเบบดั้งเดิมอาศัยการประเมินจากผู้เชี่ยวชาญเท่านั้น มีค่าใช้จ่ายสูงและใช้เวลานาน เพื่อลดปัญหานี้ ทางเราเสนอให้ใช้ประโยชน์จากการสร้างข้อมูลเพื่อฝึกฝนการสร้างคำบรรยายาย เเละ แบ่งส่วนความเสียหายอย่างอัตโนมัติ โดยใช้ โครงสร้างแบบโครงคร่าวแบบรวม ซึ่งการพัฒนานี้เป็นการขยายความสามารถของแบบจำลองให้สามารถประยุกต์ใช้ได้กว้างขวางมากขึ้นในภาคส่วนของยานยนต์ ทางผู้วิจัยได้สร้างชุดข้อมูลใหม่จาก CarDD ซึ่งเป็นชุดข้อมูลที่เฉพาะเจาะจงสำหรับการตรวจจับความเสียหายของรถยนต์ ในชุดข้อมูลนี้มีการติดป้ายกำกับความเสียหายบนรถยนต์ และผู้วิจัยได้นำข้อมูลชุดดังกล่าวมาเข้าสู่แบบจำลองเพื่อแยกส่วนของรถยนต์เป็นชิ้นส่วนต่างๆ เพื่อจัดทำการติดป้ายกำกับคำอธิบายที่แม่นยำสำหรับแต่ละชิ้นส่วนและหมวดหมู่ความเสียหาย ผลลัพธ์เบื้องต้นจากเเบบจำลอง แสดงให้เห็นถึงความสามารถในการสร้างคำบรรยายอัตโนมัติและการแบ่งส่วนความเสียหายในการวิเคราะห์ความเสียหายของรถยนต์ได้อยู่ในเกณฑ์พอใช้ ด้วยผลลัพธ์นี้ เเบบจำลองนี้ถือเป็นพื้นฐานสำคัญที่จะถูกพัฒนาต่อยอดในอนาคต การพัฒนาต่อยอดนี้ไม่เพียงแต่มุ่งเน้นที่การเพิ่มประสิทธิภาพในการแบ่งส่วนความเสียหายและสร้างคำบรรยายเท่านั้น แต่ยังรวมถึงการปรับปรุงความสามารถในการตอบสนองต่อความหลากหลายของความเสียหายที่เกิดขึ้นบนพื้นผิวและส่วนต่างๆ ของรถยนต์ ซึ่งจะช่วยให้ระบบสามารถประยุกต์ใช้ได้กับยานยนต์หลากหลายรูปแบบและสภาพความเสียหายที่แตกต่างกันมากขึ้นในอนาคต

การผลิตเชื้อต้นแบบ Lactic acid bacteria ในการผลิต Probiotic จากประเทศไทยที่สามารถใช้ในระบบผลิตปศุสัตว์

คณะเทคโนโลยีการเกษตร

การผลิตเชื้อต้นแบบ Lactic acid bacteria ในการผลิต Probiotic จากประเทศไทยที่สามารถใช้ในระบบผลิตปศุสัตว์

สารปฏิชีวนะ (Antibiotic) ถูกใช้กันอย่างแพร่หลายในระบบการผลิตปศุสัตว์ โดยมีวัตถุประสงค์เพื่อกระตุ้นภูมิคุมกัน เพิ่มประสิทธิภาพการย่อยและดูดซึมโภชนะ กระตุ้นการเจริญเติบโต ปรับสมดุลของระบบทางเดินอาหาร และลดการเกิดการติดเชื้อก่อโรค โดยเฉพาะกลุ่มที่ก่อให้เกิดโรคท้องเสีย เป็นต้น นอกจากนั้น สารปฏิชีวนะยังมีส่วนช่วยในเรื่องของผลตอบแทนทางเศรฐกิจอีกด้วย แต่อย่างไรก็ตาม การใช้สารปฏิชีวนะที่ไม่ถูกวิธีก่อให้เกิดปัญหาเรื่องการตกค้างของสารปฏิชีวนะในผลิตภัณฑ์ การดื้อยาในสัตว์และผู้บริโภค ด้วยเหตุนี้หลายประเทศห้ามไม่ให้ใช้ยาปฏิชีวนะเป็นสารเร่งการเจริญเติบโต เช่น สหภาพยุโรป ประเทศญี่ปุ่น และยังมีอีกหลายๆ ประเทศที่มีการวางแผนที่จะห้ามไม่ให้มีการใช้ยาปฏิชีวนะในอาหารสัตว์ เช่น ประเทศจีน และสหรัฐอเมริกา เป็นต้น ในขณะที่ประเทศไทยได้มีประกาศควบคุมการใช้ยาปฏิชีวนะในอาหารสัตว์โดยมีผลบังคับใช้ทั้งระดับโรงงานผลิตอาหารสัตว์ และฟาร์มที่ผสมอาหารสัตว์ใช้เองตั้งแต่วันที่ 26 กันยายน พ.ศ. 2563 ดังนั้น การทดแทนการใช้สารปฏิชีวนะด้วย Probiotic ถือว่าเป็นการแก้ปัญหาได้เป็นอย่างดี ในการศึกษาครั้งนี้ ได้ทำการศึกษาเชื้อ Lactic acid bacteria ที่มีอยู่ในระบบทางเดินอาหารของไก่เนื้อ สุกร และโคเนื้อ ที่มีคุณสมบัติเป็น Probiotic ที่มีความเหมาะสมต่อการใช้ในสภาพแวดล้อมของประเทศไทย เพื่อใช้เป็นเชื่อต้นแบบทดแทนการนำเข้าผลิตภัณฑ์ Probiotic กลุ่ม Lactic acid bacteria จากต่างประเทศที่มักจะประสบปัญหาเรื่องอัตราการรอดชีวิตเมื่อนำไปใช้จริง