KMITL Innovation Expo 2026 LogoKMITL 66th Anniversary Logo

การทำนายดัชนีคุณภาพอากาศด้วยวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่ม

รายละเอียด

ปัญหาพิเศษนี้มีวัตถุประสงค์เพื่อศึกษาและเปรียบเทียบประสิทธิภาพการทำนายดัชนีคุณภาพอากาศ (AQI) ด้วยวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่ม 5 วิธี ได้แก่ วิธีป่าสุ่ม วิธี XGBoost วิธี CatBoost วิธีรวมกลุ่มป่าสุ่มและ XGBoost และวิธีรวมกลุ่มป่าสุ่ม SVR และ MLP โดยใช้ชุดข้อมูลจากกรมควบคุมมลพิษกลางของประเทศอินเดีย (CPCB) ซึ่งชุดข้อมูลประกอบด้วยตัวแปรด้านมลพิษ 15 ตัวแปร และข้อมูลด้านสภาพอากาศ 9 ตัวแปร เก็บรวบรวมตั้งแต่มกราคม ค.ศ. 2021 ถึงธันวาคม ค.ศ. 2023 มีจำนวนข้อมูล 1,024,920 ค่า และวิธีการที่ใช้วัดประสิทธิภาพ 3 วิธี ได้แก่ รากของค่าคลาดเคลื่อนกำลังสองเฉลี่ย (Root Mean Square Error : RMSE) ค่าคลาดเคลื่อนสัมบูรณ์เฉลี่ย (Mean Absolute Error : MAE) และสัมประสิทธิ์การกำหนด (Coefficient of Determination) ผลการศึกษาพบว่าวิธีรวมกลุ่มป่าสุ่มและ XGBoost มีค่าวัดประสิทธิภาพทั้ง 3 วิธีดีที่สุด โดยมีค่า RMSE น้อยที่สุดเท่ากับ 0.1040 ค่า MAE น้อยที่สุดเท่ากับ 0.0675 และค่า มากที่สุดเท่ากับ 0.8128 แล้วทำการอธิบายผลลัพธ์จากการเรียนรู้ของเครื่องสำหรับสร้างแผนภาพด้วย SHAP ของวิธีการเรียนรู้ของเครื่องทั้ง 5 วิธี ทุกวิธีได้ข้อสรุปในทำนองเดียวกันคือตัวแปรที่มีผลกระทบต่อ ค่าทำนายโดยรวมมากที่สุด 2 อันดับแรกคือตัวแปร PM2.5 และ PM10 ตามลำดับ

วัตถุประสงค์

ทั่วโลกกำลังเผชิญกับวิกฤตมลพิษทางอากาศที่รุนแรงที่สุดในประวัติศาสตร์ การเพิ่มขึ้นของสารมลพิษในอากาศ เช่น ฝุ่นละอองขนาดเล็ก PM2.5 PM10 ก๊าซโอโซน ก๊าซคาร์บอนมอนอกไซด์ ไนโตรเจนไดออกไซด์ และซัลเฟอร์ไดออกไซด์ ซึ่งส่งผลกระทบต่อระบบทางเดินหายใจและระบบไหลเวียนโลหิตของมนุษย์ นอกจากนี้ยังมีผลกระทบทางลบต่อพืชและสัตว์ในระบบนิเวศอีกด้วย หลายพื้นที่ทั่วโลกเผชิญกับค่า PM2.5 เกินมาตรฐานอย่างต่อเนื่อง องค์การอนามัยโลก (World Health Organization : WHO) ประกาศเตือนว่า PM2.5 เป็นสารก่อมะเร็ง ส่งผลให้เกิดโรคทางเดินหายใจ โรคหัวใจ และโรคหลอดเลือดสมอง PM2.5 เป็นมลพิษทางอากาศที่อันตรายที่สุด ส่งผลต่อระบบทางเดินหายใจและเพิ่มความเสี่ยงต่อมะเร็งปอด สถิติปี 2020 มีผู้เสียชีวิตจากมะเร็งปอด 1.79 ล้านคน และคาดว่าจำนวนผู้เสียชีวิตจะเพิ่มมากขึ้นทุกปีอย่างต่อเนื่อง ดัชนีคุณภาพอากาศ (Air Quality Index : AQI) เป็นตัวชี้วัดสำคัญในการประเมินคุณภาพอากาศและบ่งชี้ถึงระดับของมลพิษ โดยใช้ข้อมูลความเข้มข้นของมลพิษในอากาศคำนวณเป็นค่าดัชนีคุณภาพอากาศที่ช่วยให้ประชาชนทราบถึงระดับความปลอดภัยของอากาศ ดังนั้นหากในชีวิตประจำวันสามารถทำนายดัชนีคุณภาพอากาศได้ ประชาชนจะสามารถวางแผนการเดินทางหรือการทำกิจกรรมกลางแจ้ง โดยหลีกเลี่ยงบริเวณที่มีมลพิษสูงได้ โดยเฉพาะกลุ่มเสี่ยง เช่น ผู้สูงอายุ เด็กเล็ก และผู้ป่วยเรื้อรัง ในช่วงหลายปีที่ผ่านมา มีงานวิจัยที่ได้พัฒนาวิธีการทำนายดัชนีคุณภาพอากาศโดยนักวิจัยได้ประยุกต์ใช้วิธีการเรียนรู้ของเครื่อง (Machine Learning) เพื่อการทำนายคุณภาพอากาศให้ดียิ่งขึ้น ในงานวิจัยนี้ คณะผู้วิจัยจึงมีความสนใจนำวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่มมาใช้ในการทำนายดัชนีคุณภาพอากาศ จากการทบทวนวรรณกรรมเกี่ยวกับงานวิจัยที่เกี่ยวข้อง คณะผู้วิจัยพบว่าในงานวิจัยของ Zhang et al. (2023) ที่ศึกษาในกลุ่มเมืองของจีน 6 แห่ง ด้วยข้อมูลมลพิษและสภาพอากาศ พบได้ว่าวิธีป่าสุ่มมีประสิทธิภาพดีที่สุดเมื่อวัดด้วย MAE ต่อมาในงานวิจัยของ Dao et al. (2022) ที่ได้ใช้ข้อมูลมลพิษในอินเดีย พบว่าวิธี XGBoost มีประสิทธิภาพดีที่สุด เช่นเดียวกับงานวิจัยของ Kumar and Pande (2023) ในขณะที่ Ravindiran et al. (2023) ได้ศึกษาด้วยข้อมูลมลพิษและสภาพอากาศในรัฐอานธรประเทศ พบว่าวิธี CatBoost มีประสิทธิภาพดีที่สุด และอีก 2 งานวิจัยที่ได้อาศัยแนวทางการรวมกลุ่มแบบ Stacking ได้แก่ งานวิจัยของ Sharma et al. (2024) ที่ศึกษาในหลายเมืองของอินเดียโดยได้ใช้วิธีการรวมกลุ่มของต้นไม้ตัดสินใจหลายวิธี หนึ่งในนั้นคือวิธีการรวมกลุ่มป่าสุ่มและ XGBoost ซึ่งก็พบว่าวิธีดังกล่าวมีประสิทธิภาพดีที่สุด และ Emeç and Yurtsever (2024) ได้ศึกษาการทำนายความเข้มข้นของ PM2.5 ซึ่งเป็นหนึ่งในมลพิษสำคัญที่ส่งผลต่อดัชนีคุณภาพอากาศของเมืองอิสตันบลูและปักกิ่งโดยใช้วิธีการเรียนรู้ของเครื่อง 3 วิธีมารวมกันเป็นวิธีรวมกลุ่มป่าสุ่ม, SVR และ MLP พบว่าวิธีนี้มีประสิทธิภาพดีกว่าการใช้ทั้ง 3 วิธีแยกกัน ดังนั้นคณะผู้วิจัยจึงสนใจนำวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่มทั้ง 5 วิธี ได้แก่ วิธีป่าสุ่ม วิธี XGBoost วิธี CatBoost วิธีรวมกลุ่มป่าสุ่มและ XGBoost และวิธีรวมกลุ่มป่าสุ่ม, SVR และ MLP โดยใช้ข้อมูลเกี่ยวกับค่ามลพิษและสภาพอากาศจากสถานีตรวจวัดในรัฐเดลี ประเทศอินเดีย ซึ่งเป็นพื้นที่ที่มีปัญหาด้านคุณภาพอากาศเป็นอันดับต้น ๆ ของโลก โดยใช้ข้อมูลตั้งแต่วันที่ 1 มกราคม 2021 ถึง 31 ธันวาคม 2023 และวิธีการวัดประสิทธิภาพ 3 วิธี ได้แก่ รากของค่าคลาดเคลื่อนกำลังสองเฉลี่ย ค่าคลาดเคลื่อนสัมบูรณ์เฉลี่ย และสัมประสิทธิ์การกำหนด (Coefficient of Determination) เปรียบเทียบประสิทธิภาพของวิธีการต่าง ๆ และระบุแนวทางที่เหมาะสมที่สุดในการทำนายดัชนีคุณภาพอากาศ

นวัตกรรมอื่น ๆ

การเปรียบเทียบรูปแบบโรงเรือนที่เหมาะสมสำหรับการผลิตพิทูเนียกระถาง

คณะเทคโนโลยีการเกษตร

การเปรียบเทียบรูปแบบโรงเรือนที่เหมาะสมสำหรับการผลิตพิทูเนียกระถาง

การวิจัยนี้มีวัตถุเพื่อศึกษาเปรียบเทียบระหว่างโรงเรือนพรางแสงและโรงเรือนอีแวปสำหรับการ ผลิตพิทูเนียกระถางที่เหมาะสมต่อการเจริญเติบโต การออกดอกและประสิทธิภาพการสังเคราะห์ ด้วยแสงของพิทูเนีย โดยแบ่งออกเป็น 2 กลุ่มประชากรดังนี้ 1) โรงเรือนอีแวป (evaporative cooling house) 2) โรงเรือนพรางแสง (shade net house) โดยแต่ละกลุ่มใช้พิทูเนียจำนวน 50 กระถางในการบันทึกผล ผลการทดลองพบว่า การปลูกพิทูเนียในโรงเรือนอีแวปส่งผลให้ลำต้นมี ความสูงมากที่สุด ดอกมีขนาดใหญ่และบานได้นานกว่า แต่การปลูกในโรงเรือนพรางแสงส่งผลให้ พิทูเนียแทงตาดอก ออกดอกได้เร็วกว่า รวมถึงดอกมีสีเข้มกว่า และมีจำนวนดอกใหม่ต่อต้น มากกว่าเท่าตัวหลังการย้ายปลูก 21 วัน ในส่วนของประสิทธิภาพการสังเคราะห์แสงในรอบวันหลัง การย้ายปลูก 30 วัน พบว่าในช่วงเวลา 12.00 น. ทำให้อัตราการสังเคราะห์ด้วยแสงสุทธิทั้ง 2 โรงเรือนสูงสุด และทำให้ค่าการนำไฟฟ้าของปากใบและอัตราการคายน้ำเพิ่มขึ้นสูงสุดในโรงเรือน อีแวป หลังการย้ายปลูก 60 วัน พบว่าอัตราการสังเคราะห์ด้วยแสงสุทธิ ค่าการนำไฟฟ้าของปาก ใบและค่าการคายน้ำมีค่าสูงสุดในโรงเรือนพรางแสงในช่วงเวลา 10.00 น. ส่วนการสังเคราะห์ด้วย แสงในความเข้มแสงที่แตกต่างกัน หลังการย้ายปลูก 30 วัน พบว่าอัตราการสังเคราะห์ด้วยแสง สุทธิ ค่าการนำไฟฟ้าปากใบและอัตราการคายน้ำสูงสุดเมื่อให้ความเข้มแสงที่ 2000 µmol m-2 s-1 โดยมีค่าสูงสุดในโรงเรือนพรางแสง หลังการย้ายปลูก 60 วัน อัตราการสังเคราะห์ด้วยแสงสุทธิ สูงสุดเมื่อให้ความเข้มแสงที่ 1400 µmol m-2 s-1 โดยมีค่าสูงสุดในโรงเรือนพรางแสง จากการศึกษา จึงสรุปผลได้ว่า การปลูกพิทูเนียในโรงเรือนพรางแสง เหมาะสมสำหรับการผลิตพิทูเนียกระถาง และมีประสิทธิภาพการสังเคราะห์ด้วยแสงของพิทูเนียมากกว่าการปลูกพิทูเนียในโรงเรือนอีแวป

เซนเซอร์ตรวจวัดสารซาลบูทามอลทางเคมีไฟฟ้าโดยใช้เทคนิคพอลิเมอร์ลอกแบบโมเลกุลร่วมกับวัสดุนาโนคอมพอสิตคอปเปอร์ออกไซด์และกราฟิติกคาร์บอนไนไตรด์

วิทยาลัยเทคโนโลยีและนวัตกรรมวัสดุ

เซนเซอร์ตรวจวัดสารซาลบูทามอลทางเคมีไฟฟ้าโดยใช้เทคนิคพอลิเมอร์ลอกแบบโมเลกุลร่วมกับวัสดุนาโนคอมพอสิตคอปเปอร์ออกไซด์และกราฟิติกคาร์บอนไนไตรด์

การใช้เซนเซอร์ทางเคมีไฟฟ้าร่วมกับแสงเพื่อตรวจวัดสารเร่งเนื้อแดงที่มีชื่อว่า "ซาลบูทามอล(Salbutamol)" โดยอาศัยเทคนิคพอลิเมอร์ลอกแบบโมเลกุลในการตรวจวัดร่วมกับวัสดุนาโนคอมพอสิตคอปเปอร์ออกไซด์และกราฟิติกคาร์บอนไนไตรด์(CuO/g-C₃N₄ Nanocomposite) ในการเพิ่มประสิทธิภาพของเซนเซอร์

การจำแนกและวิเคราะห์พฤติกรรมลูกค้าร้านคาเฟ่

คณะวิทยาศาสตร์

การจำแนกและวิเคราะห์พฤติกรรมลูกค้าร้านคาเฟ่

โลกธุรกิจในปัจจุบันมีการแข่งขันสูง การทำความเข้าใจลูกค้าเป็นสิ่งที่สำคัญที่สามารถทำให้องค์กรกำหนดความสำเร็จได้ การตลาดที่มีประสิทธิภาพไม่ใช่เพียงแค่การเสนอสินค้า โปรโมชั่น หรือบริการที่ดีเท่านั้น แต่ยังต้องมีกลยุทธ์ในการเข้าถึงและสร้างความสัมพันธ์ที่ดีกับกลุ่มลูกค้า การจัดกลุ่มลูกค้าเป็นหนึ่งในวิธีการที่จะช่วยให้ธุรกิจสามารถเจาะลึกความต้องการและพฤติกรรมของกลุ่มลูกค้าที่เข้ามาใช้บริการได้อย่างชัดเจน จากการปฎิบัติสหกิจศึกษาในครั้งนี้ ผู้ปฏิบัติได้รับมอบหมายให้ปฏิบัติงานใน ทีมธุรกิจอัจฉริยะ (Business Intelligence - BI) กลุ่มธุรกิจอาหารและเครื่องดื่ม ได้ทำหน้าที่วิเคราะห์ข้อมูลของกลุ่มลูกค้าของร้านกาแฟพันธุ์ไทยเกี่ยวกับลักษณะของลูกค้าที่เข้ามาใช้บริการในร้านกาแฟพันธุ์ไทย การปฏิบัติงานสหกิจครั้งนี้ มีวัตถุประสงค์ในการที่จะเข้าใจพฤติกรรมของลูกค้าที่เข้ามาซื้อเครื่องดื่มประเภทกาแฟและชาในร้านกาแฟพันธุ์ไทย โดยการวิเคราะห์ข้อมูลของลูกค้าที่มีการจัดเก็บไว้ ซึ่งผลจากการดำเนินได้มีการจัดกลุ่มลูกค้าที่เข้ามาซื้อเครื่องดื่มประเภทกาแฟและชา โดยการใช้ Naive Bayes, Random Forest, Deep Learning เปรียบเทียบเทคนิคที่มีความแม่นยำและเหมาะสม เพื่อนำข้อมูลที่วิเคราะห์ได้ไปใช้ประโยชน์ต่อไป