This special problem aims to study and compare the performance of predicting the air quality index (AQI) using five ensemble machine learning methods: random forest, XGBoost, CatBoost, stacking ensemble of random forest and XGBoost, and stacking ensemble of random forest, SVR, and MLP. The study uses a dataset from the Central Pollution Control Board of India (CPCB), which includes fifteen pollutants and nine meteorological variables collected between January, 2021 and December, 2023. In this study, there were 1,024,920 records. The performance is measured using three methods: root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination. The study found that the random forest and XGBoost stacking ensemble had the best performance measures among the three methods, with the minimum RMSE of 0.1040, the minimum MAE of 0.0675, and the maximum of 0.8128. SHAP-based model interpretation method for five machine learning methods. All methods reached the same conclusion: the two variables that most significantly impacted the global prediction were PM2.5 and PM10, respectively.
ทั่วโลกกำลังเผชิญกับวิกฤตมลพิษทางอากาศที่รุนแรงที่สุดในประวัติศาสตร์ การเพิ่มขึ้นของสารมลพิษในอากาศ เช่น ฝุ่นละอองขนาดเล็ก PM2.5 PM10 ก๊าซโอโซน ก๊าซคาร์บอนมอนอกไซด์ ไนโตรเจนไดออกไซด์ และซัลเฟอร์ไดออกไซด์ ซึ่งส่งผลกระทบต่อระบบทางเดินหายใจและระบบไหลเวียนโลหิตของมนุษย์ นอกจากนี้ยังมีผลกระทบทางลบต่อพืชและสัตว์ในระบบนิเวศอีกด้วย หลายพื้นที่ทั่วโลกเผชิญกับค่า PM2.5 เกินมาตรฐานอย่างต่อเนื่อง องค์การอนามัยโลก (World Health Organization : WHO) ประกาศเตือนว่า PM2.5 เป็นสารก่อมะเร็ง ส่งผลให้เกิดโรคทางเดินหายใจ โรคหัวใจ และโรคหลอดเลือดสมอง PM2.5 เป็นมลพิษทางอากาศที่อันตรายที่สุด ส่งผลต่อระบบทางเดินหายใจและเพิ่มความเสี่ยงต่อมะเร็งปอด สถิติปี 2020 มีผู้เสียชีวิตจากมะเร็งปอด 1.79 ล้านคน และคาดว่าจำนวนผู้เสียชีวิตจะเพิ่มมากขึ้นทุกปีอย่างต่อเนื่อง ดัชนีคุณภาพอากาศ (Air Quality Index : AQI) เป็นตัวชี้วัดสำคัญในการประเมินคุณภาพอากาศและบ่งชี้ถึงระดับของมลพิษ โดยใช้ข้อมูลความเข้มข้นของมลพิษในอากาศคำนวณเป็นค่าดัชนีคุณภาพอากาศที่ช่วยให้ประชาชนทราบถึงระดับความปลอดภัยของอากาศ ดังนั้นหากในชีวิตประจำวันสามารถทำนายดัชนีคุณภาพอากาศได้ ประชาชนจะสามารถวางแผนการเดินทางหรือการทำกิจกรรมกลางแจ้ง โดยหลีกเลี่ยงบริเวณที่มีมลพิษสูงได้ โดยเฉพาะกลุ่มเสี่ยง เช่น ผู้สูงอายุ เด็กเล็ก และผู้ป่วยเรื้อรัง ในช่วงหลายปีที่ผ่านมา มีงานวิจัยที่ได้พัฒนาวิธีการทำนายดัชนีคุณภาพอากาศโดยนักวิจัยได้ประยุกต์ใช้วิธีการเรียนรู้ของเครื่อง (Machine Learning) เพื่อการทำนายคุณภาพอากาศให้ดียิ่งขึ้น ในงานวิจัยนี้ คณะผู้วิจัยจึงมีความสนใจนำวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่มมาใช้ในการทำนายดัชนีคุณภาพอากาศ จากการทบทวนวรรณกรรมเกี่ยวกับงานวิจัยที่เกี่ยวข้อง คณะผู้วิจัยพบว่าในงานวิจัยของ Zhang et al. (2023) ที่ศึกษาในกลุ่มเมืองของจีน 6 แห่ง ด้วยข้อมูลมลพิษและสภาพอากาศ พบได้ว่าวิธีป่าสุ่มมีประสิทธิภาพดีที่สุดเมื่อวัดด้วย MAE ต่อมาในงานวิจัยของ Dao et al. (2022) ที่ได้ใช้ข้อมูลมลพิษในอินเดีย พบว่าวิธี XGBoost มีประสิทธิภาพดีที่สุด เช่นเดียวกับงานวิจัยของ Kumar and Pande (2023) ในขณะที่ Ravindiran et al. (2023) ได้ศึกษาด้วยข้อมูลมลพิษและสภาพอากาศในรัฐอานธรประเทศ พบว่าวิธี CatBoost มีประสิทธิภาพดีที่สุด และอีก 2 งานวิจัยที่ได้อาศัยแนวทางการรวมกลุ่มแบบ Stacking ได้แก่ งานวิจัยของ Sharma et al. (2024) ที่ศึกษาในหลายเมืองของอินเดียโดยได้ใช้วิธีการรวมกลุ่มของต้นไม้ตัดสินใจหลายวิธี หนึ่งในนั้นคือวิธีการรวมกลุ่มป่าสุ่มและ XGBoost ซึ่งก็พบว่าวิธีดังกล่าวมีประสิทธิภาพดีที่สุด และ Emeç and Yurtsever (2024) ได้ศึกษาการทำนายความเข้มข้นของ PM2.5 ซึ่งเป็นหนึ่งในมลพิษสำคัญที่ส่งผลต่อดัชนีคุณภาพอากาศของเมืองอิสตันบลูและปักกิ่งโดยใช้วิธีการเรียนรู้ของเครื่อง 3 วิธีมารวมกันเป็นวิธีรวมกลุ่มป่าสุ่ม, SVR และ MLP พบว่าวิธีนี้มีประสิทธิภาพดีกว่าการใช้ทั้ง 3 วิธีแยกกัน ดังนั้นคณะผู้วิจัยจึงสนใจนำวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่มทั้ง 5 วิธี ได้แก่ วิธีป่าสุ่ม วิธี XGBoost วิธี CatBoost วิธีรวมกลุ่มป่าสุ่มและ XGBoost และวิธีรวมกลุ่มป่าสุ่ม, SVR และ MLP โดยใช้ข้อมูลเกี่ยวกับค่ามลพิษและสภาพอากาศจากสถานีตรวจวัดในรัฐเดลี ประเทศอินเดีย ซึ่งเป็นพื้นที่ที่มีปัญหาด้านคุณภาพอากาศเป็นอันดับต้น ๆ ของโลก โดยใช้ข้อมูลตั้งแต่วันที่ 1 มกราคม 2021 ถึง 31 ธันวาคม 2023 และวิธีการวัดประสิทธิภาพ 3 วิธี ได้แก่ รากของค่าคลาดเคลื่อนกำลังสองเฉลี่ย ค่าคลาดเคลื่อนสัมบูรณ์เฉลี่ย และสัมประสิทธิ์การกำหนด (Coefficient of Determination) เปรียบเทียบประสิทธิภาพของวิธีการต่าง ๆ และระบุแนวทางที่เหมาะสมที่สุดในการทำนายดัชนีคุณภาพอากาศ

คณะแพทยศาสตร์
Background: The RGL3 gene plays a role in key signal transduction pathways and has been implicated in hypertension risk through the identification of a copy number variant deletion in exon 6. Genome-wide association studies have highlighted RGL3 as associated with hypertension, providing insights into the genetic underpinnings of the condition and its protective effects on cardiovascular health. Despite these findings, there is a lack of data that confirms the precise role of RGL3 in hypertension. Additionally, the functional impact of certain variants, particularly those classified as variants of uncertain significance, remains poorly understood. Objectives: This study aims to analyze alterations in the RGL3 protein structure caused by mutations and validate the location of the ligand binding sites. Methods: Clinical variants of the RGL3 gene were obtained from NCBI ClinVar. Variants of uncertain significance and likely benign were analyzed. Multiple sequence alignment was conducted using BioEdit v7.7.1. AlphaFold 2 predicted the wild-type and mutant 3D structures, followed by quality assessment via PROCHECK. Functional domain analysis of RasGEF, RASGEF_NTER, and RA domains was performed, and BIOVIA Discovery Studio Visualizer 2024 was used to evaluate structural and physicochemical changes. Results: The analysis of 81 RGL3 variants identified 5 likely benign and 76 variants of uncertain significance (VUS), all of which were missense mutations. Structural modeling using AlphaFold 2 revealed three key domains: RasGEF_NTER, RasGEF, and RA, where mutations induced conformational changes. Ramachandran plot validation confirmed 79.7% of residues in favored regions, indicating an overall reliable structure. Moreover, mutations within RasGEF and RA domains altered polarity, charge, and stability, suggesting potential functional disruptions. These findings provide insight into the structural consequences of RGL3 mutations, contributing to further functional assessments. Discussion & Conclusion: The identified RGL3 mutations induced physicochemical alterations in key domains, affecting charge, polarity, hydrophobicity, and flexibility. These changes likely disrupt interactions with Ras-like GTPases, impairing GDP-GTP exchange and cellular signaling. Structural analysis highlighted mutations in RasGEF and RA domains that may interfere with activation states, potentially affecting protein function and stability. These findings suggest that mutations in RGL3 could have functional consequences, emphasizing the need for further molecular and functional studies to explore their pathogenic potential.

คณะวิทยาศาสตร์
This study aimed to investigate the effectiveness of extracts from moringa seeds, roselle seeds, and tamarind seeds as coagulants to improve water quality in surface water sources. Extracts from these seeds serve as environmentally friendly coagulants and provide alternative options for enhancing surface water quality. The turbidity of surface water sources ranged between 14 and 24 NTU. The coagulation process used the Jar Test method, where the moringa seed, roselle seed, and tamarind seed extracts functioned as both primary coagulants and coagulant aids. In the preparation process, the seeds were finely ground and extracted using a 0.5-M sodium chloride (NaCl) solution. These extracts were then applied as coagulants to reduce turbidity and enhance water quality, with each concentration tested in 300 ml of water. The results indicated that the most effective way to remove turbidity using 2,000 mg/L of moringa seed extract, achieving a turbidity reduction of approximately 73.19% at a cost of 0.0309 baht per 300 ml of water. Followed by Tamarind seed extract, with a concentration of 4,000 mg/L, followed with a turbidity reduction of approximately 56.75% at a cost of 0.0933 baht per 300 ml. Lastly, roselle seed extract at 6,000 mg/L achieved a turbidity reduction of approximately 32.67% at a cost of 0.0567 baht per 300 ml of water.

คณะวิศวกรรมศาสตร์
This project focuses on the development of an automatic license plate recognition system that supports both standard and special license plates in Thailand. By utilizing Machine Learning technology, the system enhances the efficiency of license plate reading. It can process data from both images and videos. Users can register and subscribe to the service, allowing them to send data for processing through RESTful API, WebSocket, and registered IP cameras.