KMITL Innovation Expo 2025 Logo

หุ่นยนต์นำทางและโต้ตอบอัจฉริยะ

หุ่นยนต์นำทางและโต้ตอบอัจฉริยะ

รายละเอียด

การบูรณาการระบบหุ่นยนต์อัจฉริยะเข้าสู่สภาพแวดล้อมที่มุ่งเน้นมนุษย์ เช่น ห้องปฏิบัติการ โรงพยาบาล และสถาบันการศึกษา มีความสำคัญมากขึ้นเนื่องจากความต้องการที่เพิ่มขึ้นสำหรับผู้ช่วยที่เข้าถึงได้และตระหนักถึงบริบท อย่างไรก็ตาม โซลูชันในปัจจุบันมักขาดความสามารถในการปรับขนาด เช่น การพึ่งพาบุคลากรเฉพาะทางเพื่อตอบคำถามเดิมซ้ำๆ ในฐานะผู้ดูแลระบบของแผนกเฉพาะ และการขาดความสามารถในการปรับตัวให้เข้ากับสภาพแวดล้อมแบบไดนามิกที่ต้องการการตอบสนองตามสถานการณ์แบบเรียลไทม์ งานวิจัยนี้นำเสนอกรอบแนวคิดใหม่สำหรับผู้ช่วยหุ่นยนต์เชิงโต้ตอบ (Beckerle et al., 2017) ที่ออกแบบมาเพื่อช่วยในระหว่างการเยี่ยมชมห้องปฏิบัติการและบรรเทาความท้าทายที่เกิดจากข้อจำกัดด้านทรัพยากรบุคคลในการให้ข้อมูลที่ครอบคลุมแก่ผู้เยี่ยมชม ระบบที่นำเสนอทำงานผ่านหลายโหมด รวมถึงโหมดสแตนด์บายและโหมดจดจำ เพื่อให้แน่ใจว่ามีการโต้ตอบที่ราบรื่นและสามารถปรับตัวได้ในบริบทต่างๆ ในโหมดสแตนด์บาย หุ่นยนต์จะแสดงสัญญาณความพร้อมผ่านแอนิเมชันใบหน้ายิ้มขณะลาดตระเวนตามเส้นทางที่กำหนดไว้ล่วงหน้าหรือประหยัดพลังงานเมื่อต้องหยุดนิ่ง การตรวจจับสิ่งกีดขวางขั้นสูงช่วยให้มั่นใจในความปลอดภัยขณะเคลื่อนที่ในสภาพแวดล้อมแบบไดนามิก ส่วนโหมดจดจำจะเปิดใช้งานผ่านท่าทางหรือคำปลุก โดยใช้เทคโนโลยีวิชันคอมพิวเตอร์ขั้นสูงและระบบรู้จำเสียงพูดแบบเรียลไทม์เพื่อตรวจจับผู้ใช้ การจดจำใบหน้าช่วยจำแนกบุคคลว่าเป็นที่รู้จักหรือไม่รู้จัก พร้อมทั้งมอบคำทักทายเฉพาะบุคคลหรือคำแนะนำตามบริบทเพื่อเพิ่มการมีส่วนร่วมของผู้ใช้ หุ่นยนต์ต้นแบบและการออกแบบ 3 มิติแสดงไว้ในรูปที่ 1 ในโหมดโต้ตอบ ระบบได้บูรณาการเทคโนโลยีขั้นสูงหลายประการ เช่น การรู้จำเสียงพูดขั้นสูง (ASR Whisper) การประมวลผลภาษาธรรมชาติ (NLP) และโมเดลภาษาขนาดใหญ่ Ollama 3.2 (LLM Predictor, 2025) เพื่อมอบประสบการณ์ที่ใช้งานง่าย รับรู้บริบท และสามารถปรับตัวได้ โดยได้รับแรงบันดาลใจจากความต้องการมีส่วนร่วมกับนักศึกษาและส่งเสริมความสนใจในภาควิชา RAI ซึ่งมีผู้เยี่ยมชมมากกว่า 1,000 คนต่อปี ระบบนี้ช่วยแก้ไขปัญหาการเข้าถึงข้อมูลในกรณีที่ไม่มีเจ้าหน้าที่มนุษย์ ด้วยการตรวจจับคำปลุก การจดจำใบหน้าและท่าทาง และการตรวจจับสิ่งกีดขวางด้วย LiDAR หุ่นยนต์จึงสามารถสื่อสารภาษาอังกฤษได้อย่างราบรื่น พร้อมทั้งนำทางอย่างปลอดภัยและมีประสิทธิภาพ ระบบปฏิสัมพันธ์แบบ Retrieval-Augmented Generation (RAG) สื่อสารกับหุ่นยนต์เคลื่อนที่ที่สร้างบน ROS1 Noetic โดยใช้โปรโตคอล MQTT ผ่านเครือข่าย Ethernet ระบบนี้เผยแพร่เป้าหมายการนำทางไปยังโมดูล move_base ใน ROS ซึ่งจัดการการนำทางและหลีกเลี่ยงสิ่งกีดขวางโดยอัตโนมัติ แผนผังอธิบายระบบแสดงไว้ในรูปที่ 2 กรอบแนวคิดนี้ประกอบด้วยสถาปัตยกรรมแบ็กเอนด์ที่แข็งแกร่ง โดยใช้ MongoDB สำหรับการจัดเก็บและดึงข้อมูล รวมถึงกลไก RAG (Thüs et al., 2024) ในการประมวลผลข้อมูลหลักสูตรในรูปแบบ PDF เพื่อให้แน่ใจว่าหุ่นยนต์สามารถให้คำตอบที่ถูกต้องและเหมาะสมกับบริบทแก่ผู้ใช้ นอกจากนี้ การใช้แอนิเมชันใบหน้ายิ้มและระบบแปลงข้อความเป็นเสียง (TTS BotNoi) ยังช่วยเพิ่มอัตราการมีส่วนร่วมของผู้ใช้ ผลลัพธ์จากการศึกษาสังเกตการณ์และแบบสำรวจพบว่าระบบมีการปรับปรุงอย่างมีนัยสำคัญในด้านความพึงพอใจของผู้ใช้และการเข้าถึงข้อมูล เอกสารฉบับนี้ยังกล่าวถึงความสามารถของหุ่นยนต์ในการทำงานในสภาพแวดล้อมแบบไดนามิกและพื้นที่ที่เน้นมนุษย์ เช่น การจัดการกับการรบกวนระหว่างปฏิบัติภารกิจ การออกแบบแบบแยกส่วนช่วยให้สามารถผสานรวมฟีเจอร์เพิ่มเติม เช่น การจดจำท่าทางและการอัปเกรดฮาร์ดแวร์ได้ง่าย ซึ่งช่วยให้ระบบสามารถขยายขีดความสามารถในระยะยาวได้ อย่างไรก็ตาม มีข้อจำกัดบางประการ เช่น ต้นทุนการติดตั้งเริ่มต้นที่สูงและการพึ่งพาการกำหนดค่าฮาร์ดแวร์เฉพาะ ในอนาคต งานวิจัยจะมุ่งเน้นไปที่การเพิ่มความสามารถในการรองรับภาษาต่างๆ การขยายกรณีการใช้งาน และการสำรวจปฏิสัมพันธ์แบบร่วมมือกันระหว่างหุ่นยนต์หลายตัว โดยสรุป ผู้ช่วยหุ่นยนต์เชิงโต้ตอบที่นำเสนอในงานวิจัยนี้เป็นก้าวสำคัญในการเชื่อมโยงความต้องการของมนุษย์เข้ากับความก้าวหน้าทางเทคโนโลยี ด้วยการผสานรวมเทคโนโลยีปัญญาประดิษฐ์ล้ำสมัยเข้ากับโซลูชันฮาร์ดแวร์ที่ใช้งานได้จริง งานวิจัยนี้จึงนำเสนอระบบที่สามารถขยายขีดความสามารถ มีประสิทธิภาพ และเป็นมิตรกับผู้ใช้ ซึ่งช่วยเพิ่มการเข้าถึงข้อมูลและการมีส่วนร่วมของผู้ใช้ในสภาพแวดล้อมที่มุ่งเน้นมนุษย์

วัตถุประสงค์

งานวิจัยนี้มีที่มาจาก ความต้องการที่เพิ่มขึ้นสำหรับผู้ช่วยอัจฉริยะ ใน สภาพแวดล้อมที่เน้นมนุษย์เป็นศูนย์กลาง เช่น ห้องปฏิบัติการและสถาบันการศึกษา ซึ่งเผชิญปัญหาเรื่อง ข้อจำกัดด้านทรัพยากรบุคคล ในการให้ข้อมูลแก่ผู้เยี่ยมชมและนักศึกษา ปัจจุบัน โซลูชันที่มีอยู่มัก ขาดความสามารถในการขยายขนาด และ ปรับตัวให้เข้ากับสภาพแวดล้อมที่เปลี่ยนแปลง ได้อย่างมีประสิทธิภาพ นอกจากนี้ ระบบผู้ช่วยแบบเดิมมักพึ่งพาบุคลากรเฉพาะทาง ทำให้เกิดภาระในการตอบคำถามซ้ำๆ และไม่สามารถรองรับจำนวนผู้ใช้ที่เพิ่มขึ้นได้ ดังนั้น งานวิจัยนี้จึงมุ่งพัฒนา ผู้ช่วยหุ่นยนต์เชิงโต้ตอบ ที่สามารถ ทำงานอัตโนมัติในสภาพแวดล้อมแบบไดนามิก โดยใช้ AI และโมเดลภาษาขนาดใหญ่ (LLM Predictor) ผสานกับ การรู้จำเสียง ท่าทาง และใบหน้า เพื่อเพิ่ม การมีส่วนร่วมของผู้ใช้ และ ความสามารถในการโต้ตอบ แบบเรียลไทม์ ระบบนี้ยังช่วยลดภาระของบุคลากรและเพิ่ม การเข้าถึงข้อมูล ได้อย่างแม่นยำและมีประสิทธิภาพ อีกทั้งยังรองรับการพัฒนาเพิ่มเติมเพื่อให้สามารถขยายขีดความสามารถและใช้งานได้หลากหลายขึ้นในอนาคต

นวัตกรรมอื่น ๆ

การตรวจสอบโรคในใบทุเรียนด้วยภาพถ่ายและปัญญาประดิษฐ์

คณะเทคโนโลยีการเกษตร

การตรวจสอบโรคในใบทุเรียนด้วยภาพถ่ายและปัญญาประดิษฐ์

ทุเรียนเป็นพืชเศรษฐกิจที่สำคัญของประเทศไทยและเป็นสินค้าส่งออกที่มีปริมาณสูงที่สุดในโลก อย่างไรก็ตาม การผลิตทุเรียนให้มีคุณภาพสูงจำเป็นต้องอาศัยการดูแลสุขภาพของต้นทุเรียนให้แข็งแรงและปราศจากโรค เพื่อให้สามารถให้ผลผลิตได้อย่างมีประสิทธิภาพ และลดความเสียหายที่อาจเกิดขึ้นกับทั้งต้นและผลทุเรียน โรคที่พบได้บ่อยและสามารถแพร่กระจายได้อย่างรวดเร็ว มักเป็นโรคที่เกิดขึ้นบริเวณใบ ซึ่งส่งผลกระทบโดยตรงต่อการเจริญเติบโตของต้นทุเรียนและคุณภาพของผลผลิต การตรวจสอบและควบคุมโรคทางใบจึงเป็นปัจจัยสำคัญในการรักษาคุณภาพของทุเรียน งานวิจัยนี้มีวัตถุประสงค์เพื่อนำเทคโนโลยีการวิเคราะห์ภาพถ่ายร่วมกับปัญญาประดิษฐ์ (Artificial Intelligence: AI) มาประยุกต์ใช้ในการจำแนกโรคที่เกิดขึ้นในใบทุเรียน เพื่อให้เกษตรกรสามารถตรวจสอบโรคได้ด้วยตนเองโดยไม่ต้องอาศัยผู้เชี่ยวชาญ โดยจำแนกใบออกเป็น 3 ประเภท ได้แก่ ใบสุขภาพดี (Healthy: H) ใบที่ติดเชื้อแอนแทรคโนส (Anthracnose: A) และใบที่ติดเชื้อจุดสาหร่าย (Algal Spot: S) ทั้งนี้ ได้นำอัลกอริทึม Convolutional Neural Networks (CNN) ได้แก่ ResNet-50, GoogleNet และ AlexNet มาใช้ในการพัฒนาแบบจำลองเพื่อจำแนกประเภทของโรค ผลการทดลองพบว่า แบบจำลองที่ใช้ ResNet-50, GoogleNet และ AlexNet ให้ค่าความแม่นยำในการจำแนกใบเท่ากับ 93.57%, 93.95% และ 68.69% ตามลำดับ

สารกันไฟ

คณะวิศวกรรมศาสตร์

สารกันไฟ

จุดมุ่งหมายของการประดิษฐ์นี้ เพื่อพัฒนาสารป้องกันการเกิดไฟป่าให้มีความสามารถในการป้องกันการเกิดไฟป่าระยะยาว มิใช่เพียงการใช้ระงับไฟป่า หรือป้องกันไม่ให้ไฟป่านั้นแพร่กระจายเป็นวงกว้าง แต่มุ่งเน้นที่การป้องกันไม่ให้เกิดการติดไฟตั้งแต่เริ่มต้น สามารถป้องกันการเกิดไฟป่าได้อย่างครอบคลุม สามารถป้องกันได้ยาวนานตลอดช่วงระยะเวลาที่เกิดไฟป่าสูงสุดหรือช่วงเข้าสู่ฤดูแล้ง นับเป็นระยะเวลาประมาณ 3 - 4 เดือน โดยหลังจากการที่มีการผลสารกันไฟป่าจะไม่ก่อให้เกิดความเป็นพิษต่อสิ่งแวดล้อมและสิ่งมีชีวิตทั้งบนบกและในน้ำ ไม่มีสารตกค้างหรือตกค้างน้อยที่สุดโดยไม่ก่อให้เกิดอันตรายต่อสภาพแวดล้อมโดยรอบภายใต้มาตรฐานที่มีการระบุไว้ เน้นการใช้วัตถุดิบ อุปกรณ์ และเคมีภัณฑ์ที่สามารถหาได้ง่ายในประเทศไทย รวมไปถึงการใช้มูลค่าต้นทุนการผลิตให้ต่ำที่สุดเท่าที่เป็นไปได้ ซึ่งทำให้เหมาะสมต่อการใช้งานในปริมาณมากสำหรับการฉีดพ่นป้องกันพื้นที่ป่าไม้บริเวณพื้นที่ป่าที่เสี่ยงต่อการเกิดอัคคีภัย จากค่าเฉลี่ยโดยประมาณสำหรับมลพิษที่เกิดในรหว่างการเกิดไฟป่า ได้แก่ ฝุ่นละออง (PM) ประกอบด้วย PM2.5 PM10, คาร์บอนมอนออกไซด์ (CO), คาร์บอนไดออกไซด์ (CO2), ไนโตรเจนออกไซด์ (NOx), สารประกอบอินทรีย์ระเหยง่าย (VOCs) เป็นต้น

พัฒนานิทานดนตรีเพื่อส่งเสริมทักษะการคิดเชิงบริหารสำหรับเด็ก 0-3 ปี

วิทยาลัยวิศวกรรมสังคีต

พัฒนานิทานดนตรีเพื่อส่งเสริมทักษะการคิดเชิงบริหารสำหรับเด็ก 0-3 ปี

นิทานดนตรีเสริมทักษะความคิดของเด็กอายุ 0-3 ปี โดยใช้ทักษะ EF เป็นตัวเสริมสร้างพัฒนาการสำหรับเด็กโดยเน้นเรื่องทักษะพื้นฐาน 3 อย่าง 1. ความจำเพื่อใช้งาน (Working Memory) 2. การยั้งคิดไตร่ตรอง (Inhibitory Control) 3. การยืดหยุ่นความคิด (Cognitive Flexibility)