
การบูรณาการระบบหุ่นยนต์อัจฉริยะเข้าสู่สภาพแวดล้อมที่มุ่งเน้นมนุษย์ เช่น ห้องปฏิบัติการ โรงพยาบาล และสถาบันการศึกษา มีความสำคัญมากขึ้นเนื่องจากความต้องการที่เพิ่มขึ้นสำหรับผู้ช่วยที่เข้าถึงได้และตระหนักถึงบริบท อย่างไรก็ตาม โซลูชันในปัจจุบันมักขาดความสามารถในการปรับขนาด เช่น การพึ่งพาบุคลากรเฉพาะทางเพื่อตอบคำถามเดิมซ้ำๆ ในฐานะผู้ดูแลระบบของแผนกเฉพาะ และการขาดความสามารถในการปรับตัวให้เข้ากับสภาพแวดล้อมแบบไดนามิกที่ต้องการการตอบสนองตามสถานการณ์แบบเรียลไทม์ งานวิจัยนี้นำเสนอกรอบแนวคิดใหม่สำหรับผู้ช่วยหุ่นยนต์เชิงโต้ตอบ (Beckerle et al., 2017) ที่ออกแบบมาเพื่อช่วยในระหว่างการเยี่ยมชมห้องปฏิบัติการและบรรเทาความท้าทายที่เกิดจากข้อจำกัดด้านทรัพยากรบุคคลในการให้ข้อมูลที่ครอบคลุมแก่ผู้เยี่ยมชม ระบบที่นำเสนอทำงานผ่านหลายโหมด รวมถึงโหมดสแตนด์บายและโหมดจดจำ เพื่อให้แน่ใจว่ามีการโต้ตอบที่ราบรื่นและสามารถปรับตัวได้ในบริบทต่างๆ ในโหมดสแตนด์บาย หุ่นยนต์จะแสดงสัญญาณความพร้อมผ่านแอนิเมชันใบหน้ายิ้มขณะลาดตระเวนตามเส้นทางที่กำหนดไว้ล่วงหน้าหรือประหยัดพลังงานเมื่อต้องหยุดนิ่ง การตรวจจับสิ่งกีดขวางขั้นสูงช่วยให้มั่นใจในความปลอดภัยขณะเคลื่อนที่ในสภาพแวดล้อมแบบไดนามิก ส่วนโหมดจดจำจะเปิดใช้งานผ่านท่าทางหรือคำปลุก โดยใช้เทคโนโลยีวิชันคอมพิวเตอร์ขั้นสูงและระบบรู้จำเสียงพูดแบบเรียลไทม์เพื่อตรวจจับผู้ใช้ การจดจำใบหน้าช่วยจำแนกบุคคลว่าเป็นที่รู้จักหรือไม่รู้จัก พร้อมทั้งมอบคำทักทายเฉพาะบุคคลหรือคำแนะนำตามบริบทเพื่อเพิ่มการมีส่วนร่วมของผู้ใช้ หุ่นยนต์ต้นแบบและการออกแบบ 3 มิติแสดงไว้ในรูปที่ 1 ในโหมดโต้ตอบ ระบบได้บูรณาการเทคโนโลยีขั้นสูงหลายประการ เช่น การรู้จำเสียงพูดขั้นสูง (ASR Whisper) การประมวลผลภาษาธรรมชาติ (NLP) และโมเดลภาษาขนาดใหญ่ Ollama 3.2 (LLM Predictor, 2025) เพื่อมอบประสบการณ์ที่ใช้งานง่าย รับรู้บริบท และสามารถปรับตัวได้ โดยได้รับแรงบันดาลใจจากความต้องการมีส่วนร่วมกับนักศึกษาและส่งเสริมความสนใจในภาควิชา RAI ซึ่งมีผู้เยี่ยมชมมากกว่า 1,000 คนต่อปี ระบบนี้ช่วยแก้ไขปัญหาการเข้าถึงข้อมูลในกรณีที่ไม่มีเจ้าหน้าที่มนุษย์ ด้วยการตรวจจับคำปลุก การจดจำใบหน้าและท่าทาง และการตรวจจับสิ่งกีดขวางด้วย LiDAR หุ่นยนต์จึงสามารถสื่อสารภาษาอังกฤษได้อย่างราบรื่น พร้อมทั้งนำทางอย่างปลอดภัยและมีประสิทธิภาพ ระบบปฏิสัมพันธ์แบบ Retrieval-Augmented Generation (RAG) สื่อสารกับหุ่นยนต์เคลื่อนที่ที่สร้างบน ROS1 Noetic โดยใช้โปรโตคอล MQTT ผ่านเครือข่าย Ethernet ระบบนี้เผยแพร่เป้าหมายการนำทางไปยังโมดูล move_base ใน ROS ซึ่งจัดการการนำทางและหลีกเลี่ยงสิ่งกีดขวางโดยอัตโนมัติ แผนผังอธิบายระบบแสดงไว้ในรูปที่ 2 กรอบแนวคิดนี้ประกอบด้วยสถาปัตยกรรมแบ็กเอนด์ที่แข็งแกร่ง โดยใช้ MongoDB สำหรับการจัดเก็บและดึงข้อมูล รวมถึงกลไก RAG (Thüs et al., 2024) ในการประมวลผลข้อมูลหลักสูตรในรูปแบบ PDF เพื่อให้แน่ใจว่าหุ่นยนต์สามารถให้คำตอบที่ถูกต้องและเหมาะสมกับบริบทแก่ผู้ใช้ นอกจากนี้ การใช้แอนิเมชันใบหน้ายิ้มและระบบแปลงข้อความเป็นเสียง (TTS BotNoi) ยังช่วยเพิ่มอัตราการมีส่วนร่วมของผู้ใช้ ผลลัพธ์จากการศึกษาสังเกตการณ์และแบบสำรวจพบว่าระบบมีการปรับปรุงอย่างมีนัยสำคัญในด้านความพึงพอใจของผู้ใช้และการเข้าถึงข้อมูล เอกสารฉบับนี้ยังกล่าวถึงความสามารถของหุ่นยนต์ในการทำงานในสภาพแวดล้อมแบบไดนามิกและพื้นที่ที่เน้นมนุษย์ เช่น การจัดการกับการรบกวนระหว่างปฏิบัติภารกิจ การออกแบบแบบแยกส่วนช่วยให้สามารถผสานรวมฟีเจอร์เพิ่มเติม เช่น การจดจำท่าทางและการอัปเกรดฮาร์ดแวร์ได้ง่าย ซึ่งช่วยให้ระบบสามารถขยายขีดความสามารถในระยะยาวได้ อย่างไรก็ตาม มีข้อจำกัดบางประการ เช่น ต้นทุนการติดตั้งเริ่มต้นที่สูงและการพึ่งพาการกำหนดค่าฮาร์ดแวร์เฉพาะ ในอนาคต งานวิจัยจะมุ่งเน้นไปที่การเพิ่มความสามารถในการรองรับภาษาต่างๆ การขยายกรณีการใช้งาน และการสำรวจปฏิสัมพันธ์แบบร่วมมือกันระหว่างหุ่นยนต์หลายตัว โดยสรุป ผู้ช่วยหุ่นยนต์เชิงโต้ตอบที่นำเสนอในงานวิจัยนี้เป็นก้าวสำคัญในการเชื่อมโยงความต้องการของมนุษย์เข้ากับความก้าวหน้าทางเทคโนโลยี ด้วยการผสานรวมเทคโนโลยีปัญญาประดิษฐ์ล้ำสมัยเข้ากับโซลูชันฮาร์ดแวร์ที่ใช้งานได้จริง งานวิจัยนี้จึงนำเสนอระบบที่สามารถขยายขีดความสามารถ มีประสิทธิภาพ และเป็นมิตรกับผู้ใช้ ซึ่งช่วยเพิ่มการเข้าถึงข้อมูลและการมีส่วนร่วมของผู้ใช้ในสภาพแวดล้อมที่มุ่งเน้นมนุษย์
งานวิจัยนี้มีที่มาจาก ความต้องการที่เพิ่มขึ้นสำหรับผู้ช่วยอัจฉริยะ ใน สภาพแวดล้อมที่เน้นมนุษย์เป็นศูนย์กลาง เช่น ห้องปฏิบัติการและสถาบันการศึกษา ซึ่งเผชิญปัญหาเรื่อง ข้อจำกัดด้านทรัพยากรบุคคล ในการให้ข้อมูลแก่ผู้เยี่ยมชมและนักศึกษา ปัจจุบัน โซลูชันที่มีอยู่มัก ขาดความสามารถในการขยายขนาด และ ปรับตัวให้เข้ากับสภาพแวดล้อมที่เปลี่ยนแปลง ได้อย่างมีประสิทธิภาพ นอกจากนี้ ระบบผู้ช่วยแบบเดิมมักพึ่งพาบุคลากรเฉพาะทาง ทำให้เกิดภาระในการตอบคำถามซ้ำๆ และไม่สามารถรองรับจำนวนผู้ใช้ที่เพิ่มขึ้นได้ ดังนั้น งานวิจัยนี้จึงมุ่งพัฒนา ผู้ช่วยหุ่นยนต์เชิงโต้ตอบ ที่สามารถ ทำงานอัตโนมัติในสภาพแวดล้อมแบบไดนามิก โดยใช้ AI และโมเดลภาษาขนาดใหญ่ (LLM Predictor) ผสานกับ การรู้จำเสียง ท่าทาง และใบหน้า เพื่อเพิ่ม การมีส่วนร่วมของผู้ใช้ และ ความสามารถในการโต้ตอบ แบบเรียลไทม์ ระบบนี้ยังช่วยลดภาระของบุคลากรและเพิ่ม การเข้าถึงข้อมูล ได้อย่างแม่นยำและมีประสิทธิภาพ อีกทั้งยังรองรับการพัฒนาเพิ่มเติมเพื่อให้สามารถขยายขีดความสามารถและใช้งานได้หลากหลายขึ้นในอนาคต

คณะบริหารธุรกิจ
ในโลกที่ให้ความสําคัญกับความยั่งยืนและลดผลกระทบต่อสิ่งแวดล้อมมากขึ้น DreamHigh เป็นผู้บุกเบิกแนวทางที่เป็นนวัตกรรมในการแก้ปัญหาบรรจุภัณฑ์โดยใช้ไมซีเลียม ซึ่งเป็นวัสดุธรรมชาติที่ย่อยสลายได้ทางชีวภาพ และทดแทนได้จากเชื้อรา ภารกิจของเราคือการปฏิวัติอุตสาหกรรมบรรจุภัณฑ์โดยนําเสนอทางเลือกที่เป็นมิตรกับสิ่งแวดล้อมที่ไม่เพียงแต่ลดขยะเท่านั้น แต่ยังสอดคล้องกับความพยายามระดับโลกในการต่อสู้กับการเปลี่ยนแปลงสภาพภูมิอากาศอีกด้วย บรรจุภัณฑ์ไมซีเลียมเสนอทางเลือกที่น่าสนใจสําหรับบรรจุภัณฑ์พลาสติกและสไตโรโฟมแบบดั้งเดิม ซึ่งมีส่วนสําคัญต่อมลภาวะต่อสิ่งแวดล้อม สามารถย่อยสลายได้ทางชีวภาพอย่างสมบูรณ์ ย่อยสลายได้ และสามารถย่อยสลายได้ในสภาพแวดล้อมทางธรรมชาติภายในไม่กี่สัปดาห์ โดยไม่ทิ้งสารพิษตกค้างไว้ข้างหลัง นอกจากนี้ ผลิตภัณฑ์ที่ใช้ไมซีเลียมมีน้ําหนักเบา ทนทาน และปรับแต่งได้ ทําให้เหมาะสําหรับการใช้งานที่หลากหลาย ตั้งแต่บรรจุภัณฑ์สินค้าอุปโภคบริโภคไปจนถึงวัสดุป้องกันการจัดส่ง แผนธุรกิจของ DreamHigh ได้สรุปกระบวนการผลิตที่ปรับขนาดได้โดยใช้เทคนิคการเพาะปลูกไมซีเลียมขั้นสูงและความร่วมมือกับภาคเกษตรกรรมในท้องถิ่นเพื่อใช้ของเสียทางการเกษตรเป็นวัตถุดิบหลัก สิ่งนี้ไม่เพียงแต่ช่วยให้มั่นใจถึงประสิทธิภาพด้านต้นทุนเท่านั้น แต่ยังสนับสนุนเศรษฐกิจหมุนเวียนด้วยการนําของเสียที่จะถูกทิ้งไปใช้ประโยชน์ใหม่

คณะวิทยาศาสตร์
โครงงานนี้มีวัตถุประสงค์เพื่อศึกษาและพัฒนาระบบกักเก็บพลังงานไฟฟ้าจากแหล่งพลังงานแสงอาทิตย์โดยใช้เทคโนโลยีโซลาร์เซลล์ร่วมกับแบตเตอรี่กราฟีนควันตัมดอท (Graphene Quantum Dot Battery) ซึ่งถือเป็นแนวทางใหม่ในการเพิ่มประสิทธิภาพในการเก็บพลังงานและยืดอายุการใช้งานของระบบพลังงานทดแทน การเลือกใช้กราฟีนและควันตัมดอทเป็นวัสดุในการพัฒนาแบตเตอรี่เนื่องจากคุณสมบัติที่โดดเด่นในการนำไฟฟ้า ความสามารถในการเก็บประจุไฟฟ้า การส่งผ่านพลังงานที่มีประสิทธิภาพและความเสถียรสูงขึ้น

คณะเทคโนโลยีสารสนเทศ
งานวิจัยนี้นำเสนอวิธีการเรียนรู้เชิงลึกเพื่อสร้างคำบรรยายอัตโนมัติจากการแบ่งส่วนความเสียหายของชิ้นส่วนรถยนต์ โดยการวิเคราะห์จากข้อมูลภาพของรถยนต์โดยใช้โครงสร้างแบบโครงคร่าวแบบรวม (Unified Framework) เพื่อช่วยให้สามารถระบุตำแหน่งและอธิบายความเสียหายที่เกิดขึ้นกับรถยนต์ได้อย่างแม่นยำและรวดเร็ว โดยการพัฒนาประยุกต์จากพื้นฐานงานวิจัยที่มีชื่อว่า ”GRiT: A Generative Region-to-text Transformer for Object Understanding” ที่ผู้วิจัยได้ทำการพัฒนาและปรับแต่งให้เหมาะสมกับการวิเคราะห์ภาพที่เกี่ยวข้องกับรถยนต์โดยเฉพาะ การปรับปรุงนี้มีจุดประสงค์เพื่อทำให้แบบจำลองสามารถสร้างคำบรรยายสำหรับบริเวณต่างๆ ของรถยนต์ได้อย่างแม่นยำ ตั้งแต่บริเวณที่ได้รับความเสียหายไปจนถึงการระบุส่วนประกอบต่างๆ บนรถยนต์ ทางผู้วิจัยได้เน้นการพัฒนาเทคนิคการเรียนรู้เชิงลึกเพื่อสร้างคำบรรยายอัตโนมัติและการแบ่งส่วนความเสียหายในการวิเคราะห์ความเสียหายของรถยนต์ เพื่อช่วยให้สามารถระบุตำแหน่งและอธิบายความเสียหายที่เกิดขึ้นกับยานยนต์ได้อย่างแม่นยำ ช่วยเพิ่มความรวดเร็ว ลดภาระของผู้เชี่ยวชาญในการประเมินความเสียหาย โดยวิธีการเเบบดั้งเดิมอาศัยการประเมินจากผู้เชี่ยวชาญเท่านั้น มีค่าใช้จ่ายสูงและใช้เวลานาน เพื่อลดปัญหานี้ ทางเราเสนอให้ใช้ประโยชน์จากการสร้างข้อมูลเพื่อฝึกฝนการสร้างคำบรรยายาย เเละ แบ่งส่วนความเสียหายอย่างอัตโนมัติ โดยใช้ โครงสร้างแบบโครงคร่าวแบบรวม ซึ่งการพัฒนานี้เป็นการขยายความสามารถของแบบจำลองให้สามารถประยุกต์ใช้ได้กว้างขวางมากขึ้นในภาคส่วนของยานยนต์ ทางผู้วิจัยได้สร้างชุดข้อมูลใหม่จาก CarDD ซึ่งเป็นชุดข้อมูลที่เฉพาะเจาะจงสำหรับการตรวจจับความเสียหายของรถยนต์ ในชุดข้อมูลนี้มีการติดป้ายกำกับความเสียหายบนรถยนต์ และผู้วิจัยได้นำข้อมูลชุดดังกล่าวมาเข้าสู่แบบจำลองเพื่อแยกส่วนของรถยนต์เป็นชิ้นส่วนต่างๆ เพื่อจัดทำการติดป้ายกำกับคำอธิบายที่แม่นยำสำหรับแต่ละชิ้นส่วนและหมวดหมู่ความเสียหาย ผลลัพธ์เบื้องต้นจากเเบบจำลอง แสดงให้เห็นถึงความสามารถในการสร้างคำบรรยายอัตโนมัติและการแบ่งส่วนความเสียหายในการวิเคราะห์ความเสียหายของรถยนต์ได้อยู่ในเกณฑ์พอใช้ ด้วยผลลัพธ์นี้ เเบบจำลองนี้ถือเป็นพื้นฐานสำคัญที่จะถูกพัฒนาต่อยอดในอนาคต การพัฒนาต่อยอดนี้ไม่เพียงแต่มุ่งเน้นที่การเพิ่มประสิทธิภาพในการแบ่งส่วนความเสียหายและสร้างคำบรรยายเท่านั้น แต่ยังรวมถึงการปรับปรุงความสามารถในการตอบสนองต่อความหลากหลายของความเสียหายที่เกิดขึ้นบนพื้นผิวและส่วนต่างๆ ของรถยนต์ ซึ่งจะช่วยให้ระบบสามารถประยุกต์ใช้ได้กับยานยนต์หลากหลายรูปแบบและสภาพความเสียหายที่แตกต่างกันมากขึ้นในอนาคต