KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Weapon Aiming System

Abstract

This project aims to develop a conceptual prototype of a weapon aiming system that simulates an anti-aircraft gun. Utilizing an optical camera, the system detects moving objects and calculates their trajectories in real time. The results are then used to control a motorized laser pointer with two degrees of freedom (DoF) of rotation, enabling it to aim at the predicted position of the target. Our system is built on the Raspberry Pi platform, employing machine vision software. The object motion tracking functionality was developed using the OpenCV library, based on color detection algorithms. Experimental results indicate that the system successfully detects the movement of a tennis ball at a rate of 30 frames per second (fps). The current phase involves designing and integratively testing the mechanical system for precise laser pointer position control. This project exemplifies the integration of knowledge in electronics (computer programming) and mechanical engineering (motor control).

Objective

โปรเจคนี้เกิดจากความสนใจในการพัฒนาระบบที่มีการผสมผสานของ Machine Vision และระบบความคุมกลไกมอเตอร์ 2 แกนแบบ Degrees of Freedom(DoF) เพื่อพัฒนาอุปกรณ์ต้นแบบที่สามารถตรวจจับ ติดตาม และเล็งเป้าหมายได้อย่างมีแม่นยำ ซึ่งหวังเป็นอย่างยิ่งว่าโปรเจคนี้จะมีประโยชน์ต่องานในอนาคตต่างๆที่เกี่ยวข้อง ไม่ว่าจะเป็น ทางการทหาร ทางการแพทย์ หรือทางอุตสาหกรรม

Other Innovations

Artifical intelligence for agriculture and enviroment

คณะวิศวกรรมศาสตร์

Artifical intelligence for agriculture and enviroment

Artificial intelligence for agriculture and environment is a collection of significant models for enviromental friendly Thailand development. The models create with machine learning and deep learning by Near infrared spectroscopy research center for agricultural and food products, including: Determining the nutrient needs (N P K) of durian trees by measuring durian leaves using a non-destructive technique using artificial intelligence, Identification of combustion properties of biomass from fast-growing trees and agricultural residues using non-destructive techniques combined with artificial intelligence, and Evaluation of global warming due to biomass combustion using non-destructive techniques using artificial intelligence. The basic technology used is Near infrared Fourier transform spectroscopy technology which measurement and output display can be done quickly without chemical, no requirement for special expert, and measurement price per sample is very low. But the instrument cannot be produced in Thailand.

Read more
VIDEO-BASED EMOTION DETECTION FROM FACIAL EXPRESSIONS  WITH ROBUSTNESS TO PARTIAL OCCLUSION

คณะเทคโนโลยีสารสนเทศ

VIDEO-BASED EMOTION DETECTION FROM FACIAL EXPRESSIONS WITH ROBUSTNESS TO PARTIAL OCCLUSION

Facial Expression Recognition (FER) has attracted considerable attention in fields such as healthcare, customer service, and behavior analysis. However, challenges remain in developing a robust system capable of adapting to various environments and dynamic situations. In this study, the researchers introduced an Ensemble Learning approach to merge outputs from multiple models trained in specific conditions, allowing the system to retain old information while efficiently learning new data. This technique is advantageous in terms of training time and resource usage, as it reduces the need to retrain a new model entirely when faced with new conditions. Instead, new specialized models can be added to the Ensemble system with minimal resource requirements. The study explores two main approaches to Ensemble Learning: averaging outputs from dedicated models trained under specific scenarios and using Mixture of Experts (MoE), a technique that combines multiple models each specialized in different situations. Experimental results showed that Mixture of Experts (MoE) performs more effectively than the Averaging Ensemble method for emotion classification in all scenarios. The MoE system achieved an average accuracy of 84.41% on the CK+ dataset, 54.20% on Oulu-CASIA, and 61.66% on RAVDESS, surpassing the 71.64%, 44.99%, and 57.60% achieved by Averaging Ensemble in these datasets, respectively. These results demonstrate MoE’s ability to accurately select the model specialized for each specific scenario, enhancing the system’s capacity to handle more complex environments.

Read more
Innovation in commercial vertical set of golden apple snails  as environmentally friendly using an aquaponics system

คณะเทคโนโลยีการเกษตร

Innovation in commercial vertical set of golden apple snails as environmentally friendly using an aquaponics system

The innovation of the vertical aquaponics system for rearing golden apple snails integrating with vegetable cultivation by using substrates to water treatment. The system aims to maximize the use of vertical space, save water, and produce safe vegetables for consumption or commercial purposes, and to support living things. The golden apple snail excretes wastes/leftover food scraps that are filtered on the substrates used for water treatment. Meanwhile, natural bacteria help change these wastes into nutrients that plants can use. Therefore, the system is environmentally friendly.

Read more