This project aims to develop a conceptual prototype of a weapon aiming system that simulates an anti-aircraft gun. Utilizing an optical camera, the system detects moving objects and calculates their trajectories in real time. The results are then used to control a motorized laser pointer with two degrees of freedom (DoF) of rotation, enabling it to aim at the predicted position of the target. Our system is built on the Raspberry Pi platform, employing machine vision software. The object motion tracking functionality was developed using the OpenCV library, based on color detection algorithms. Experimental results indicate that the system successfully detects the movement of a tennis ball at a rate of 30 frames per second (fps). The current phase involves designing and integratively testing the mechanical system for precise laser pointer position control. This project exemplifies the integration of knowledge in electronics (computer programming) and mechanical engineering (motor control).
โปรเจคนี้เกิดจากความสนใจในการพัฒนาระบบที่มีการผสมผสานของ Machine Vision และระบบความคุมกลไกมอเตอร์ 2 แกนแบบ Degrees of Freedom(DoF) เพื่อพัฒนาอุปกรณ์ต้นแบบที่สามารถตรวจจับ ติดตาม และเล็งเป้าหมายได้อย่างมีแม่นยำ ซึ่งหวังเป็นอย่างยิ่งว่าโปรเจคนี้จะมีประโยชน์ต่องานในอนาคตต่างๆที่เกี่ยวข้อง ไม่ว่าจะเป็น ทางการทหาร ทางการแพทย์ หรือทางอุตสาหกรรม

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
The thesis artwork titled “The Red Mist” presents a narrative adapted from a short story of the same name by Assistant Professor Chatnarong Wisutkul in 2003. The story is set in a future world where people's greed and selfishness have led to a war, forcing them to rely on "breathing machines" to survive in the "red toxic mist." Phakin, a 15-year-old boy, embarks on a journey with a group of refugees. As they pass through abandoned cities, they encounter a boy without a breathing machine who has recently lost his father. Phakin decides to help him, despite objections from others. The boy tries to end his life by shutting off his breathing machine, and when Phakin intervenes to save him, he collapses from inhaling the toxic air. Witnessing Phakin's selfless act, the others are moved and join forces to save both of them. Phakin demonstrates that in difficult times, humans must cooperate and help each other rather than being divided and selfish.

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
The concept for this work came from my curiosity about what would happen if, during interdimensional travel in space, a teleportation system were used. This system involves removing matter from one point and transferring it to another while maintaining its original state. If an error occurs and the matter is recreated or fused together, it could result in an experimental creature merging with the spacecraft. I choose the tardigrade as the first experimental subject for teleportation because the water bear has already been sent into space and survived. Therefore, I thought that if we were to actually test this teleportation system, the tardigrade would likely be one of the creatures chosen for experimentation.

คณะบริหารธุรกิจ
In a world increasingly focused on sustainability and reducing environmental impact, DreamHigh is pioneering an innovative approach to packaging solutions using mycelium—a natural, biodegradable, and renewable material derived from fungi. Our mission is to revolutionize the packaging industry by offering eco-friendly alternatives that not only reduce waste but also align with global efforts to combat climate change. Mycelium packaging offers a compelling alternative to traditional plastic and Styrofoam packaging, which contribute significantly to environmental pollution. It is fully biodegradable, compostable, and capable of breaking down in natural environments within weeks, leaving no toxic residues behind. Additionally, mycelium-based products are lightweight, durable, and customizable, making them suitable for a wide range of applications, from consumer goods packaging to protective shipping materials. DreamHigh’s business plan outlines a scalable production process leveraging advanced mycelium cultivation techniques and partnerships with local agricultural sectors to utilize agricultural waste as a key raw material. This not only ensures cost-efficiency but also supports a circular economy by repurposing waste that would otherwise be discarded.