
This capstone project develops an AI-powered chatbot to address cybersecurity vulnerabilities, leveraging the Common Vulnerabilities and Exposures (CVE) system and the Common Vulnerability Scoring System (CVSS). The chatbot will provide accessible and informative support for understanding and mitigating these vulnerabilities, potentially leading to significant improvements in cybersecurity practices.
ในยุคที่การรักษาความปลอดภัยทางไซเบอร์มีการพัฒนาอย่างรวดเร็ว องค์กรต่างๆต้องเผชิญกับความท้าทายมากมายในการระบุและลดความเสี่ยงจากช่องโหว่ต่างๆ ภัยคุกคามทางไซเบอร์ที่มีความซับซ้อนเพิ่มขึ้นทำให้จำเป็นต้องมีเครื่องมือที่มีประสิทธิภาพและประสิทธิผลเพื่อช่วยให้นักทดสอบเจาะระบบสามารถประเมินช่องโหว่และผลกระทบที่อาจเกิดขึ้นได้ วิธีการปัจจุบันมักเกี่ยวข้องกับการค้นหาด้วยตนเองผ่านฐานข้อมูลขนาดใหญ่ ซึ่งอาจใช้เวลานานและมีโอกาสเกิดข้อผิดพลาดจากมนุษย์ แชทบอทที่ใช้ปัญญาประดิษฐ์สามารถทำให้กระบวนการนี้มีประสิทธิภาพมากขึ้น โดยให้ข้อมูลที่รวดเร็วและแม่นยำเกี่ยวกับช่องโหว่เฉพาะ รวมถึงคำอธิบาย คะแนน CVSS และระดับความรุนแรง

คณะเทคโนโลยีการเกษตร
Soil is home to a diverse array of living organisms that interact within a complex food web, facilitating energy and nutrient cycling essential for sustaining life above ground. Among these organisms, soil microbes play a crucial role in supporting plant growth. Beneficial microorganisms enhance nutrient availability, improve soil structure by increasing porosity, and strengthen plant resistance to diseases. Conversely, harmful microorganisms, such as plant pathogens, can hinder plant growth and reduce crop yields when present in high concentrations. Neutral microorganisms, which naturally inhabit the soil, contribute to the soil ecosystem without directly impacting plants. A single teaspoon of soil contains over a billion microorganisms, yet only about 1% of them can be cultured in laboratory conditions. This highlights soil as one of the richest reservoirs of microbial diversity on Earth.

คณะวิทยาศาสตร์
This project presents the development of a "Smart Cat House" using Internet of Things (IoT) and image processing technology to facilitate and enhance the safety of cat care for owners. The infrastructure of the smart cat house consists of an ESP8266 board connected to an ESP32 CAM camera for cat monitoring, and an Arduino board that controls various sensors such as a motion sensor in the litter box, a DHT22 temperature and humidity sensor, an ultrasonic water and food level sensor, including a water supply system for cats, an automatic feeding system, and a ventilation system controlled by a DC FAN that adjusts its operation according to the measured temperature to maintain a suitable environment. There is also an IR sensor to detect the cat's entry into the litter box and an automatic sand changing system with a SERVO MOTOR. All systems are connected and controlled through the Blynk application, which can be used on mobile phones, allowing owners to monitor and care for their pets remotely. Cat detection and identification uses image processing technology from the ESP32 CAM camera in conjunction with YOLO (You Only Look Once), a high-performance object detection algorithm, to detect and distinguish between cats and people. Data from various sensors are sent to the Arduino board to control the operation of various devices in the smart cat house, such as turning lights on and off, automatically changing sand, adjusting temperature and humidity, feeding food and water at scheduled times, or ventilation. The use of a connection system via ESP8266 and the Blynk application makes it easy and convenient to control various devices. Owners can monitor and control the operation of the entire system from anywhere with internet access.

คณะวิศวกรรมศาสตร์
The Diabetes Meal Management Application is a digital health tool designed to empower Type 2 diabetic patients in managing their diet and blood sugar levels more effectively. With features like personalized meal recommendations, nutrient tracking, and seamless integration with wearable blood glucose monitors via Blood sugar measuring device (CGM), the application enables users to monitor glucose fluctuations in real time and adjust dietary choices accordingly. Built with the Flutter framework and supported by a backend of Express.js and MongoDB, the application prioritizes a user-friendly interface, ensuring easy navigation and encouraging consistent engagement with meal planning and health tracking. Preliminary user trials show that the application contributes to more stable blood sugar levels and improved adherence to dietary recommendations, helping users reduce health risks associated with diabetes complications. By offering a proactive approach to diabetes management, the application reduces the need for frequent clinical interventions, thus potentially lowering medical costs over time. This project highlights the promising role of digital health solutions in supporting personalized diabetes care, emphasizing the potential for scalable, user-centered interventions that foster long-term health improvements for diabetic patients.