This capstone project develops an AI-powered chatbot to address cybersecurity vulnerabilities, leveraging the Common Vulnerabilities and Exposures (CVE) system and the Common Vulnerability Scoring System (CVSS). The chatbot will provide accessible and informative support for understanding and mitigating these vulnerabilities, potentially leading to significant improvements in cybersecurity practices.
ในยุคที่การรักษาความปลอดภัยทางไซเบอร์มีการพัฒนาอย่างรวดเร็ว องค์กรต่างๆต้องเผชิญกับความท้าทายมากมายในการระบุและลดความเสี่ยงจากช่องโหว่ต่างๆ ภัยคุกคามทางไซเบอร์ที่มีความซับซ้อนเพิ่มขึ้นทำให้จำเป็นต้องมีเครื่องมือที่มีประสิทธิภาพและประสิทธิผลเพื่อช่วยให้นักทดสอบเจาะระบบสามารถประเมินช่องโหว่และผลกระทบที่อาจเกิดขึ้นได้ วิธีการปัจจุบันมักเกี่ยวข้องกับการค้นหาด้วยตนเองผ่านฐานข้อมูลขนาดใหญ่ ซึ่งอาจใช้เวลานานและมีโอกาสเกิดข้อผิดพลาดจากมนุษย์ แชทบอทที่ใช้ปัญญาประดิษฐ์สามารถทำให้กระบวนการนี้มีประสิทธิภาพมากขึ้น โดยให้ข้อมูลที่รวดเร็วและแม่นยำเกี่ยวกับช่องโหว่เฉพาะ รวมถึงคำอธิบาย คะแนน CVSS และระดับความรุนแรง
คณะแพทยศาสตร์
This study explores the application of deep convolutional neural networks (CNNs) for accurate pill identification, addressing the limitations of traditional human-based methods. Using a dataset of 1,250 images across 10 household remedy drugs, various CNN architectures, including YOLO models, were tested under different conditions. Results showed that natural lighting was optimal for imprinted pills, while a lightbox improved detection for plain pills. The YOLOv5-tiny model demonstrated the best detection accuracy, and efficientNet_b0 achieved the highest classification performance. While the model showed strong results, its generalization is limited by sample size and drug variability. Nonetheless, this approach holds promise for enhancing medication safety and reducing errors in outpatient care.
คณะสถาปัตยกรรม ศิลปะและการออกแบบ
-
วิทยาลัยนวัตกรรมการผลิตขั้นสูง
Smart Agriculture has rapidly developed in recent years, particularly with the integration of robotics and automation technologies to improve production efficiency and reduce costs, thereby enhancing the quality of current agricultural practices. A key innovation in this area is the rail-based robotic arm, designed to enhance work efficiency using a rail system with high precision and effectiveness. The application of this robotic arm covers various processes, such as planting, sorting, maintenance, harvesting, and resource management, allowing continuous operation and reducing human labor in repetitive and high-risk tasks. Studies have shown that the use of rail-based robotic arms in agriculture can significantly improve work efficiency, reduce production costs, and effectively mitigate environmental impact. By using robots in agricultural processes, it is possible to reduce contamination, lower the risk of crop damage, and make agriculture more sustainable. Additionally, it can increase accuracy in operations on limited spaces or farms with diverse crops. From these findings, it can be concluded that adopting rail-based robotic arm technology in agriculture not only enhances long-term production efficiency but also promotes sustainable agriculture and maximizes resource use, meeting future agricultural demands