KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

VulnaChat: Vulnerability Chatbot

VulnaChat: Vulnerability Chatbot

Abstract

This capstone project develops an AI-powered chatbot to address cybersecurity vulnerabilities, leveraging the Common Vulnerabilities and Exposures (CVE) system and the Common Vulnerability Scoring System (CVSS). The chatbot will provide accessible and informative support for understanding and mitigating these vulnerabilities, potentially leading to significant improvements in cybersecurity practices.

Objective

ในยุคที่การรักษาความปลอดภัยทางไซเบอร์มีการพัฒนาอย่างรวดเร็ว องค์กรต่างๆต้องเผชิญกับความท้าทายมากมายในการระบุและลดความเสี่ยงจากช่องโหว่ต่างๆ ภัยคุกคามทางไซเบอร์ที่มีความซับซ้อนเพิ่มขึ้นทำให้จำเป็นต้องมีเครื่องมือที่มีประสิทธิภาพและประสิทธิผลเพื่อช่วยให้นักทดสอบเจาะระบบสามารถประเมินช่องโหว่และผลกระทบที่อาจเกิดขึ้นได้ วิธีการปัจจุบันมักเกี่ยวข้องกับการค้นหาด้วยตนเองผ่านฐานข้อมูลขนาดใหญ่ ซึ่งอาจใช้เวลานานและมีโอกาสเกิดข้อผิดพลาดจากมนุษย์ แชทบอทที่ใช้ปัญญาประดิษฐ์สามารถทำให้กระบวนการนี้มีประสิทธิภาพมากขึ้น โดยให้ข้อมูลที่รวดเร็วและแม่นยำเกี่ยวกับช่องโหว่เฉพาะ รวมถึงคำอธิบาย คะแนน CVSS และระดับความรุนแรง

Other Innovations

Effects of Different Salinity Levels on Survival Rate and Growth Performance of Golden Apple Snail (Pomacea canaliculata) for Brackish Water Aquaculture Development

คณะเทคโนโลยีการเกษตร

Effects of Different Salinity Levels on Survival Rate and Growth Performance of Golden Apple Snail (Pomacea canaliculata) for Brackish Water Aquaculture Development

This study aimed to investigate the effects of different salinity levels on survival rate and growth performance of golden apple snail (Pomacea canaliculata). The experiment was conducted at salinity levels of 0, 5, 10, and 15 ppt, with four replicates each, over an 8-week period. The results showed that golden apple snails reared at 5-10 ppt exhibited survival rates and growth performance not significantly different (p>0.05) from those in the freshwater control group (0 ppt). These findings suggest the potential for developing golden apple snail culture in brackish water systems and the possibility of integration with other brackish water species in polyculture systems.

Read more
Banana Blossom Chips

คณะอุตสาหกรรมอาหาร

Banana Blossom Chips

Banana Blossom Chips is a healthy snack rich in dietary fiber, antioxidants, and plant-based protein. It is a result of combining local Thai ingredients: banana blossoms, which are high in dietary fiber and antioxidants, chickpea flour, a source of plant-based protein, and red jasmine brown rice, which has a low GI value and high antioxidants. It is processed to create crispiness and a unique shape, reduces fat, is gluten-free, and helps maintain nutritional value. Therefore, it is a new alternative for health-conscious consumers and adds value to Thai agricultural products.

Read more
A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

คณะวิทยาศาสตร์

A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

This special problem aims to compare the performance of machine learning methods in time series forecasting using lagged time periods as independent variables. The lagged periods are categorized into three groups: lagged by 10 units, lagged by 15 units, and lagged by 20 units. The study employs four machine learning methods: Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The time series data simulated as independent variables diverse including characteristics: Random Walk data, Trending data, and Non-Linear data, with sample sizes of 100, 300, 500, and 700. The research methodology involves splitting the data into 90% for training and 10% for testing. Simulations and analysis are performed using the R programming language, with 1,000 iterations conducted. The results are evaluated based on the average mean squared error (AMSE) and the average mean absolute percentage error (AMAPE) are calculated to identify the best performing method. The research findings revealed that for Random Walk data, the best performing methods are Random Forest and Support Vector Machine. For Trend data, the best performing methods are Random Forest. For Non-Linear data, the best performing methods are Support Vector Machine. When tested with real-world data, the results show that for the Euro-to-Thai Baht exchange rate, the best methods are Random Forest and Support Vector Machine. For the S&P 500 Index in USD, the best performing methods are Random Forest. For the Bank of America Corp Index in USD, the best performing methods are Support Vector Machine.

Read more