Jaundice, a common condition in infants that results from high bilirubin levels in the blood, often requires early diagnosis and monitoring to prevent severe complications, especially in newborns. Traditional diagnostic methods can be time-consuming and subject to human error. This study proposes an approach for real-time jaundice detection using advanced image processing techniques and machine learning algorithms. By analyzing images captured in RGB color spaces, pixel values are extracted and processed through Otsu’s thresholding and morphological operations to detect color patterns indicative of jaundice. A classifier model is then trained to distinguish between normal and jaundiced conditions, offering an automated, accurate, and efficient diagnostic tool. The system’s potential to operate in real-time makes it particularly suited for clinical settings, providing healthcare professionals with timely insights to improve patient outcomes. The proposed method represents a significant innovation in healthcare, combining artificial intelligence and medical imaging to enhance the early detection and management of jaundice, reducing reliance on manual interventions and improving overall healthcare delivery.
โรคดีซ่าน ซึ่งเป็นภาวะทางการแพทย์ทั่วไปที่มีลักษณะการเหลืองของผิวหนังและดวงตา มักบ่งบอกถึงความผิดปกติของตับหรือเลือดที่อยู่เบื้องหลัง การตรวจพบในระยะเริ่มต้นมีความสำคัญอย่างยิ่ง โดยเฉพาะในทารกแรกเกิด ที่หากไม่ได้รับการรักษาโรคดีซ่าน อาจนำไปสู่ภาวะแทรกซ้อนร้ายแรงได้ วิธีการวินิจฉัยแบบดั้งเดิมต้องอาศัยการตรวจสอบด้วยสายตาหรือการทดสอบในห้องปฏิบัติการ ซึ่งอาจใช้เวลานานและมีข้อผิดพลาดได้ ความก้าวหน้าล่าสุดในด้านการประมวลผลภาพและแมชชีนเลิร์นนิงเสนอความเป็นไปได้ใหม่ ๆ สำหรับการตรวจจับที่แม่นยำ มีประสิทธิภาพ และแบบเรียลไทม์มากขึ้น ด้วยการวิเคราะห์รูปแบบสีผิว ปัญญาประดิษฐ์ (AI) สามารถทำให้การวินิจฉัยเป็นไปโดยอัตโนมัติ ทำให้รวดเร็วขึ้นและลดการพึ่งพาการประเมินโดยมนุษย์
คณะวิศวกรรมศาสตร์
The project uses artificial intelligence (AI) and deep learning to develop a smart police system (Smart Police) to analyze the identity of individuals and vehicles suspected of involvement in crimes. The system uses CCTV cameras to detect people with concealed weapons and track vehicles involved in crimes. The system also sends alerts to the police when a crime is detected. The Smart Police system is a collaboration between the Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, the Provincial Police Region 2, the Chachoengsao Foundation for Development, and the Smart City Office of Chachoengsao Province. The system is designed to prevent and deter crime, increase public safety and order, and build a network of cooperation between the government, the private sector, and the community. The system is currently under development, but it has the potential to be a valuable tool for law enforcement. The system could help to reduce crime and improve public safety in Chachoengsao Province and other parts of Thailand.
คณะวิทยาศาสตร์
Microalgae are rich in bioactive compounds that may contribute to the growth of probiotics, which require appropriate nutrients, known as prebiotics, to thrive. This study aims to evaluate the effectiveness of crude extracts from intracellular components residues of the microalga Chlorella sp. KLSc61 in promoting the growth of the probiotic bacterium Lactiplantibacillus plantarum JCM1149 under simulated gastrointestinal conditions. The intracellular extracts were obtained using 70% (v/v) ethanol, and their effects on probiotic growth were tested at concentrations of 0.1%, 0.75% and 1.5%. The growth of Lactiplantibacillus plantarum JCM1149 was assessed using the drop plate method. The findings of this study will provide insights into the potential of Chlorella sp. KLSc61 extracts in enhancing probiotic growth, which could lead to the development of synbiotic dietary supplements containing both probiotics and prebiotics. Additionally, this study may serve as a foundation for further research on the role of microalgal extracts in gut health and immune system modulation.
คณะอุตสาหกรรมอาหาร
In the development of high protein jasmine rice products, hydrocolloids, HPMC at 0, 0.25, 0.5 and 1% w/v and MD at 10% w/v were used. This hydrocolloid contained 30% w/v dissolved protein and was coated with raw jasmine rice. It was found that different amounts of HPMC affected the adhesion of proteins in rice. Then, the hydrocolloid with the best adhesion, 0.25% w/v, was used to find the optimum amount for coating rice at ratios of 1:3 and 1:5, which affected protein content, texture, color, water retention and sensory acceptability.