
Jaundice, a common condition in infants that results from high bilirubin levels in the blood, often requires early diagnosis and monitoring to prevent severe complications, especially in newborns. Traditional diagnostic methods can be time-consuming and subject to human error. This study proposes an approach for real-time jaundice detection using advanced image processing techniques and machine learning algorithms. By analyzing images captured in RGB color spaces, pixel values are extracted and processed through Otsu’s thresholding and morphological operations to detect color patterns indicative of jaundice. A classifier model is then trained to distinguish between normal and jaundiced conditions, offering an automated, accurate, and efficient diagnostic tool. The system’s potential to operate in real-time makes it particularly suited for clinical settings, providing healthcare professionals with timely insights to improve patient outcomes. The proposed method represents a significant innovation in healthcare, combining artificial intelligence and medical imaging to enhance the early detection and management of jaundice, reducing reliance on manual interventions and improving overall healthcare delivery.
โรคดีซ่าน ซึ่งเป็นภาวะทางการแพทย์ทั่วไปที่มีลักษณะการเหลืองของผิวหนังและดวงตา มักบ่งบอกถึงความผิดปกติของตับหรือเลือดที่อยู่เบื้องหลัง การตรวจพบในระยะเริ่มต้นมีความสำคัญอย่างยิ่ง โดยเฉพาะในทารกแรกเกิด ที่หากไม่ได้รับการรักษาโรคดีซ่าน อาจนำไปสู่ภาวะแทรกซ้อนร้ายแรงได้ วิธีการวินิจฉัยแบบดั้งเดิมต้องอาศัยการตรวจสอบด้วยสายตาหรือการทดสอบในห้องปฏิบัติการ ซึ่งอาจใช้เวลานานและมีข้อผิดพลาดได้ ความก้าวหน้าล่าสุดในด้านการประมวลผลภาพและแมชชีนเลิร์นนิงเสนอความเป็นไปได้ใหม่ ๆ สำหรับการตรวจจับที่แม่นยำ มีประสิทธิภาพ และแบบเรียลไทม์มากขึ้น ด้วยการวิเคราะห์รูปแบบสีผิว ปัญญาประดิษฐ์ (AI) สามารถทำให้การวินิจฉัยเป็นไปโดยอัตโนมัติ ทำให้รวดเร็วขึ้นและลดการพึ่งพาการประเมินโดยมนุษย์

วิทยาลัยอุตสาหกรรมการบินนานาชาติ
This analysis focuses on the essential components of flight plans when operating at low altitudes. The study explores the critical elements that pilots and flight operators must consider to guarantee the safety of passengers, crew, and aircraft while flying at low altitudes. By examining factors such as weather conditions, airspace restrictions, terrain considerations, and emergency procedures, this analysis aims to provide valuable insights into optimizing flight planning processes for low-altitude operations

คณะวิศวกรรมศาสตร์
This thesis presents the application of deep learning for object classification. The selected deep learning architectures studied include Convolutional Neural Networks (CNN) and ResNet18. It covers data preparation, feature extraction, parameter tuning for accuracy comparison, and performance evaluation of the selected models. The aim is to propose an efficient model for use in devices that assist visually impaired individuals in classifying indoor objects and providing sound alerts.

วิทยาลัยการจัดการนวัตกรรมและอุตสาหกรรม
This study presents the development of carbon-based multiphase metal oxide nanocomposites (CNF@MOx; M = Ag, Mn, Bi, Fe) incorporating silver, manganese, bismuth, and iron nanoparticles within polyacrylonitrile (PAN)-derived carbon nanofibers. These nanocomposites were fabricated via the electrospinning technique followed by annealing in an argon atmosphere. The resulting nanofibers exhibited a uniform structure, with diameters ranging from 559 to 830 nm and embedded nanoparticles of 9-21 nm. Structural characterization confirmed the presence of various oxidation states of metal oxides, which play a crucial role in charge storage mechanisms. Electrochemical performance testing demonstrated that CNF@Ag/Mn/Bi/Fe-20 achieved the highest specific capacitance of 156 F g⁻¹ at a scan rate of 2 mV s⁻¹ and exhibited excellent cycling stability, retaining over 96% of its capacitance after 1400 charge-discharge cycles. The synergistic combination of electric double-layer capacitance and redox-based charge storage enhances the performance of these nanofibers as promising electrode materials for supercapacitor applications.