Jaundice, a common condition in infants that results from high bilirubin levels in the blood, often requires early diagnosis and monitoring to prevent severe complications, especially in newborns. Traditional diagnostic methods can be time-consuming and subject to human error. This study proposes an approach for real-time jaundice detection using advanced image processing techniques and machine learning algorithms. By analyzing images captured in RGB color spaces, pixel values are extracted and processed through Otsu’s thresholding and morphological operations to detect color patterns indicative of jaundice. A classifier model is then trained to distinguish between normal and jaundiced conditions, offering an automated, accurate, and efficient diagnostic tool. The system’s potential to operate in real-time makes it particularly suited for clinical settings, providing healthcare professionals with timely insights to improve patient outcomes. The proposed method represents a significant innovation in healthcare, combining artificial intelligence and medical imaging to enhance the early detection and management of jaundice, reducing reliance on manual interventions and improving overall healthcare delivery.
โรคดีซ่าน ซึ่งเป็นภาวะทางการแพทย์ทั่วไปที่มีลักษณะการเหลืองของผิวหนังและดวงตา มักบ่งบอกถึงความผิดปกติของตับหรือเลือดที่อยู่เบื้องหลัง การตรวจพบในระยะเริ่มต้นมีความสำคัญอย่างยิ่ง โดยเฉพาะในทารกแรกเกิด ที่หากไม่ได้รับการรักษาโรคดีซ่าน อาจนำไปสู่ภาวะแทรกซ้อนร้ายแรงได้ วิธีการวินิจฉัยแบบดั้งเดิมต้องอาศัยการตรวจสอบด้วยสายตาหรือการทดสอบในห้องปฏิบัติการ ซึ่งอาจใช้เวลานานและมีข้อผิดพลาดได้ ความก้าวหน้าล่าสุดในด้านการประมวลผลภาพและแมชชีนเลิร์นนิงเสนอความเป็นไปได้ใหม่ ๆ สำหรับการตรวจจับที่แม่นยำ มีประสิทธิภาพ และแบบเรียลไทม์มากขึ้น ด้วยการวิเคราะห์รูปแบบสีผิว ปัญญาประดิษฐ์ (AI) สามารถทำให้การวินิจฉัยเป็นไปโดยอัตโนมัติ ทำให้รวดเร็วขึ้นและลดการพึ่งพาการประเมินโดยมนุษย์
คณะวิทยาศาสตร์
This research will begin with a review of literature and related studies to examine existing technologies and methods for hand gesture recognition and their applications in controlling electronic devices such as drones, robots, and gaming systems. Subsequently, a hand gesture recognition system will be designed and developed using machine learning and computer vision techniques, with a focus on creating an algorithm that operates quickly and accurately, making it suitable for real-time control. The developed system will be tested and refined using various simulated scenarios to evaluate its efficiency and accuracy in diverse environments. Additionally, a user-friendly interface will be developed to ensure accessibility for all user groups. The research will also incorporate qualitative studies to gather feedback from both novice users and experts, which will contribute to further system improvements, ensuring it effectively meets user needs. Ultimately, the findings of this research will lead to the development of a functional prototype for gesture-based control, which can be applied in industries and entertainment. This will contribute to advancements in innovation and new technologies in the future.
คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี
Mulberry Kefir is a fermented drink made from ripe mulberry fruit, made from ripe mulberry juice. Its pinkish-red color is the color of the natural anthocyanin in mulberries. Anthocyanins have antioxidant properties and contain the prebiotic fructo-oligosaccharides, the probiotic microorganisms Lactobacillus and Saccharomeces. It has a sweet and sour taste, is fizzy and has a little alcohol. The taste and fizz come from production technology, which uses a fermentation process from microorganisms. Mulberry kefir is considered a functional beverage made from plants (Plant Based Beverage), suitable for people who are lactose intolerant and those who do not consume beverages made from milk. It makes you feel refreshed after drinking it.
คณะสถาปัตยกรรม ศิลปะและการออกแบบ
The " Center of Invention for Future and Sustainability Project (Continuing)" serves as a continuation of a pilot initiative focused on the retrofitting of older buildings (Vach. 7), specifically a five-story structure. The primary aim of this project is to develop methodologies for enhancing the sustainability of existing buildings in order to mitigate carbon dioxide emissions. In the execution of the Future and Sustainability Innovation Development Center Project (Continuing), a comprehensive analysis of relevant data and theoretical frameworks has been undertaken, leading to the formulation of a research methodology designed to identify optimal strategies for retrofitting older buildings to reduce carbon dioxide emissions. This approach is structured into three principal phases: the combustion of fuels associated with transportation, labor, and materials; the electricity consumption during the construction process; and the accumulation of greenhouse gases from both existing and new construction materials. The project employs an experimental research design, wherein empirical data is collected to evaluate and quantify the equivalent carbon dioxide emissions arising from the construction of new buildings compared to the retrofitting of the selected case study building. Subsequent analysis of the collected data revealed that retrofitting the existing structure—through the integration of sustainable design principles—resulted in greenhouse gas emissions of 11.88 kgCO2e/sq.m. In contrast, the emissions associated with new building construction amounted to 299.35 kgCO2e/sq.m., indicating a reduction in carbon dioxide emissions by a factor of approximately 26 when compared to the construction of new buildings.